scholarly journals A Serum Component Mediates Food Restriction–Induced Growth Attenuation

Endocrinology ◽  
2014 ◽  
Vol 155 (3) ◽  
pp. 932-940 ◽  
Author(s):  
Rakefet Pando ◽  
Biana Shtaif ◽  
Moshe Phillip ◽  
Galia Gat-Yablonski
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina B. Blanco ◽  
Lydia K. Greene ◽  
Robert Schopler ◽  
Cathy V. Williams ◽  
Danielle Lynch ◽  
...  

AbstractIn nature, photoperiod signals environmental seasonality and is a strong selective “zeitgeber” that synchronizes biological rhythms. For animals facing seasonal environmental challenges and energetic bottlenecks, daily torpor and hibernation are two metabolic strategies that can save energy. In the wild, the dwarf lemurs of Madagascar are obligate hibernators, hibernating between 3 and 7 months a year. In captivity, however, dwarf lemurs generally express torpor for periods far shorter than the hibernation season in Madagascar. We investigated whether fat-tailed dwarf lemurs (Cheirogaleus medius) housed at the Duke Lemur Center (DLC) could hibernate, by subjecting 8 individuals to husbandry conditions more in accord with those in Madagascar, including alternating photoperiods, low ambient temperatures, and food restriction. All dwarf lemurs displayed daily and multiday torpor bouts, including bouts lasting ~ 11 days. Ambient temperature was the greatest predictor of torpor bout duration, and food ingestion and night length also played a role. Unlike their wild counterparts, who rarely leave their hibernacula and do not feed during hibernation, DLC dwarf lemurs sporadically moved and ate. While demonstrating that captive dwarf lemurs are physiologically capable of hibernation, we argue that facilitating their hibernation serves both husbandry and research goals: first, it enables lemurs to express the biphasic phenotypes (fattening and fat depletion) that are characteristic of their wild conspecifics; second, by “renaturalizing” dwarf lemurs in captivity, they will emerge a better model for understanding both metabolic extremes in primates generally and metabolic disorders in humans specifically.


2021 ◽  
Author(s):  
Thiago Ramos de Barros ◽  
Verônica Pinto Salerno ◽  
Thalita Ponce ◽  
Míriam Raquel Meira Mainenti

ABSTRACT Introduction To train and prepare cadets for a career as firefighters in Rio de Janeiro, the second-year students of the Officers Training Course are submitted to a Search, Rescue, and Survival Training (SRST) course, which is characterized by long periods of high physical exertion and sleep restriction during a 9-day instruction module, and food restriction during a 7-day survival module. The present study investigated changes in the body composition of 39 male cadets submitted to SRST during training and 4 weeks of recovery with no restrictions in food consumption. Materials and Methods Each cadet was evaluated by anthropometric measurements at six time points: pre-SRST; after the first module; after the second module; and after 1, 2, and 4 weeks of recovery. Measurements included body girths and skinfolds, to estimate trunk (chest and waist) and limbs (arm and thigh) dimensions, as well as body composition. Repeated measures ANOVA and Friedman test were applied (depending on each data distribution). Results Statistically significant decreases in body weight (76.2; 69.8-87.2 to 63.9; 58.9-73.5 kg) and fat free mass (FFM, 69.2; 63.7-77.2 to 60.1; 56.2-68.0 kg) were observed following the second module of SRST. Following a single week of recovery, the FFM returned to pre-SRST values. Body weight returned to pre-training levels in 2 weeks. Body fat percentage and mass also significantly decreased during SRST (9.0; 7.7-12.3 to 6.5; 5.1-9.3% and 6.9; 5.6-10.0 to 6.9; 5.6-10.0 kg, respectively), which showed a slower and more gradual recovery that reached pre-SRST values after 4 weeks. The girths of arm, thigh, chest and waist significantly decreased due to SRST. The girths of the limbs (arm and thigh) returned to pre-training values after one month of recovery, while the girths of the trunk (chest and waist) did not return to pre-SRST values during the study period. Conclusions The findings suggest that men who experience periods of high energy demands and sleep restriction followed by a period of food restriction will endure unavoidable physical consequences that can be mostly reversed by a 1-month recovery.


Sign in / Sign up

Export Citation Format

Share Document