scholarly journals Tissue-Specific Expression of a Rat Renin Transcript Lacking the Coding Sequence for the Prefragment and Its Stimulation by Myocardial Infarction*

Endocrinology ◽  
2000 ◽  
Vol 141 (8) ◽  
pp. 2963-2970 ◽  
Author(s):  
Susanne Clausmeyer ◽  
Alexander Reinecke ◽  
Raphaela Farrenkopf ◽  
Thomas Unger ◽  
Jörg Peters

An alternative transcript of the rat renin gene was recently characterized in the adrenal gland, in addition to the known messenger RNA (mRNA) coding for preprorenin. In the alternative transcript, exon 1 is replaced by exon 1A, a domain originating in intron 1. The reading frame of this mRNA, termed exon 1A-renin transcript, codes for a truncated prorenin that presumably remains intracellular, in contrast to preprorenin, which is targeted to the secretory pathway by its prefragment. We here demonstrate the tissue-specific regulation of expression of both transcripts by RT and PCR. In many tissues both transcripts are present, for example in the adrenal gland, spleen, liver, and hypothalamus. In some organs, however, only one of the renin mRNAs is found. In the kidney only the full-length mRNA coding for preprorenin is detected. In the heart exclusively the exon 1A-mRNA is expressed, but not the preprorenin transcript. After myocardial infarction, which is known to activate the intracardiac renin-angiotensin system, expression of exon 1A-renin mRNA in the left ventricle was stimulated about 4-fold, compared with that in sham-operated animals, whereas no mRNA corresponding to preprorenin was detectable. These findings may have implications for the current concepts of local extrarenal renin-angiotensin systems, as they provide the molecular basis for a possible intracellular function of renin and exclude a role for locally produced secretory renin in the heart.

1984 ◽  
Vol 4 (10) ◽  
pp. 2151-2160
Author(s):  
S G Amara ◽  
R M Evans ◽  
M G Rosenfeld

Different 3' coding exons in the rat calcitonin gene are used to generate distinct mRNAs encoding either the hormone calcitonin in thyroidal C-cells or a new neuropeptide referred to as calcitonin gene-related peptide in neuronal tissue, indicating the RNA processing regulation is one strategy used in tissue-specific regulation of gene expression in the brain. Although the two mRNAs use the same transcriptional initiation site and have identical 5' terminal sequences, their 3' termini are distinct. The polyadenylation sites for calcitonin and calcitonin gene-related peptide mRNAs are located at the end of the exons 4 and 6, respectively. Termination of transcription after the calcitonin exon does not dictate the production of calcitonin mRNA, because transcription proceeds through both calcitonin and calcitonin gene-related peptide exons irrespective of which mRNA is ultimately produced. In isolated nuclei, both polyadenylation sites appear to be utilized; however, the proximal (calcitonin) site is preferentially used in nuclei from tissues producing calcitonin mRNA. These data suggest that the mechanism dictating production of each mRNA involves the selective use of alternative polyadenylation sites.


1990 ◽  
Vol 267 (3) ◽  
pp. 745-750 ◽  
Author(s):  
J A Clements ◽  
B A Matheson ◽  
J E Funder

We have altered the thyroid hormonal status of both male and female rats and examined the expression of six functional members of the rat kallikrein gene family (PS, S1, S2, S3, K1 and P1) in the submandibular gland (SMG), kidney, prostate, testis and anterior pituitary gland (AP) of these animals. On Northern-blot analysis with gene-specific oligonucleotide probes, the steady-state mRNA levels of S1, S2, S3, K1 and P1 were all dramatically altered in the SMG of male and female rats treated with propylthiouracil (PTU; 100 mg/litre of drinking water) or thyroxine (T4; 10 micrograms/100 mg body wt.) for 3 weeks. The SMG mRNA levels of these five genes were all lowered (30-90%) in hypothyroid (PTU-treated) male and female rats and elevated (1.4-4-fold, male; 1.5-11-fold, female) in the hyperthyroid (T4-treated) and PTU/T4-treated animals. In contrast, PS (true kallikrein) mRNA levels in the male or female SMG or kidney were essentially unchanged. K1 mRNA levels in the kidney were considerably less responsive to thyroid status than those in the SMG. Changes in S3 and P1 mRNA levels in the prostate were also variable, but essentially unaffected by these treatments. AP PS mRNA levels were also unaffected by changes in thyroid-hormonal status, as were levels of a novel P1-like mRNA in the testis. In summary, these studies demonstrate that the same kallikrein gene family member(s) may be differentially regulated by thyroid hormones in the rat SMG, kidney, prostate and pituitary, and thus further extend the concept of tissue-specific expression and hormonal regulation of the kallikrein gene family in the rat.


2012 ◽  
Vol 417 (4) ◽  
pp. 1298-1303 ◽  
Author(s):  
Nikolay B. Pestov ◽  
Ruslan I. Dmitriev ◽  
Maria B. Kostina ◽  
Tatyana V. Korneenko ◽  
Mikhail I. Shakhparonov ◽  
...  

1984 ◽  
Vol 4 (10) ◽  
pp. 2151-2160 ◽  
Author(s):  
S G Amara ◽  
R M Evans ◽  
M G Rosenfeld

Different 3' coding exons in the rat calcitonin gene are used to generate distinct mRNAs encoding either the hormone calcitonin in thyroidal C-cells or a new neuropeptide referred to as calcitonin gene-related peptide in neuronal tissue, indicating the RNA processing regulation is one strategy used in tissue-specific regulation of gene expression in the brain. Although the two mRNAs use the same transcriptional initiation site and have identical 5' terminal sequences, their 3' termini are distinct. The polyadenylation sites for calcitonin and calcitonin gene-related peptide mRNAs are located at the end of the exons 4 and 6, respectively. Termination of transcription after the calcitonin exon does not dictate the production of calcitonin mRNA, because transcription proceeds through both calcitonin and calcitonin gene-related peptide exons irrespective of which mRNA is ultimately produced. In isolated nuclei, both polyadenylation sites appear to be utilized; however, the proximal (calcitonin) site is preferentially used in nuclei from tissues producing calcitonin mRNA. These data suggest that the mechanism dictating production of each mRNA involves the selective use of alternative polyadenylation sites.


Genetics ◽  
1995 ◽  
Vol 140 (4) ◽  
pp. 1389-1406 ◽  
Author(s):  
G I Patterson ◽  
K M Kubo ◽  
T Shroyer ◽  
V L Chandler

Abstract The b gene encodes a transcriptional regulator of the maize anthocyanin biosynthetic pathway. Certain b alleles participate in paramutation, an allele-specific interaction that heritably alters transcription. The moderately transcribed B' allele heritably reduces the transcription of the highly transcribed B-I allele in a B'/B-I heterozygote, such that the B-I allele becomes B'. To identify the cis-acting sequences required for paramutation, we used B' or B-I alleles to isolate intragenic recombinants with B-Peru, an allele that is insensitive to paramutation and has distinct tissue-specific regulation. Physical mapping of the recombinant alleles showed that most of the crossovers were in a small region near the 5' end of the b-transcribed region. Analysis of the recombinant alleles revealed that the ability to cause and respond to paramutation and the control of tissue-specific expression both localize to the 5' region of the gene. The 3' boundary of these functions lies just upstream of the translation initiation codon. The 5' boundary has been estimated to be no more than 0.1 cM further upstream (1-150 kb). Thus, sequences critical for paramutation lie upstream of the b coding sequences and may include transcriptional regulatory sequences.


1986 ◽  
Vol 6 (11) ◽  
pp. 3746-3754 ◽  
Author(s):  
I Kemler ◽  
M Busslinger

Two nonallelic pairs of late H2A and H2B genes of the sea urchin Psammechinus miliaris were isolated on two different cosmid clones. The genes of cosmid PmL1 are separated by 11 kilobases of DNA and code for the late H2A-2 and H2B-2 variants. The genes of clone PmL2 are divergently transcribed with 1,060 base pairs of intergenic spacer DNA and code for novel variants of the H2A-2 and H2B-2 type. A comparison of the promoter sequences revealed little homology upstream of the TATA box with the exception of a 24-base-pair-long conserved sequence which is present at the same position in both late H2B promoters and part of which is identical with the "H2B-specific" 5' element. The mRNAs of the H2A and H2B genes of cosmid PmL1 reach their maximal levels early in the mesenchyme blastula embryo, whereas the transcripts of both genes of clone PmL2 accumulate maximally only later in the pluteus larva. In the adult sea urchin all four mRNAs are present in the tube foot but not in the intestine and lantern muscle. This pattern of differential expression in the embryo and tissue-specific expression in the adult suggests cell lineage-specific regulation of the late H2A-2 and H2B-2 genes. Another class of late histone genes represented by the H2A-3 and H2B-1 genes was shown to be expressed in all three adult tissues tested, whereas transcripts of the late H2A-1 genes could not be detected, suggesting that these genes are active exclusively during sea urchin development.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4503-4508 ◽  
Author(s):  
Qianjin Lu ◽  
Donna Ray ◽  
David Gutsch ◽  
Bruce Richardson

LFA-1 (CD11a/CD18, αLβ2) is an integrin expressed in a tissue-specific fashion and is important in inflammatory and immune responses. Promoter analysis has identified transcription factors that may be involved in CD11a expression, but the mechanisms contributing to its tissue-specific expression are incompletely characterized. In this report we have asked if DNA methylation and/or chromatin structure could contribute to tissue-specific CD11a expression. Bisulfite sequencing was used to compare methylation patterns in the promoter and 5′ flanking regions of the ITGAL gene, encoding CD11a, in normal human T cells, which express LFA-1, and fibroblasts, which do not. The region was found to be heavily methylated in fibroblasts but not T cells, and methylation correlated with an inactive chromatin configuration as analyzed by deoxyribonuclease 1 sensitivity. Patch methylation of the promoter region revealed that promoter activity was methylation-sensitive but that methylation of the 5′ flanking regions more than 500 base pairs 5′ to the transcription start site could also suppress promoter function. Treating fibroblasts with a DNA methylation inhibitor decreased ITGAL promoter methylation and increased CD11a messenger RNA. The results thus indicate that methylation and chromatin structure may contribute to the tissue-specific expression of CD11a.


2000 ◽  
Vol 165 (3) ◽  
pp. 607-615 ◽  
Author(s):  
CM Bishop ◽  
CJ McCabe ◽  
NJ Gittoes ◽  
PJ Butler ◽  
JA Franklyn

Skeletal muscles are important target tissues for thyroid hormone action. The present study examines the influence of thyroid status on muscle growth and tissue-specific expression of thyroid receptor (TR) mRNA isoforms in a commercial strain of the domestic duck (Anas platyrhynchos). Four groups (n=5) of 1-week-old ducklings were rendered either hypothyroid by treatment with methimazole (6 mg 100 g(-1) body mass or 12 mg 100 g(-1) body mass), or hyperthyroid by treatment with methimazole (6 mg 100 g(-1) body mass) in combination with thyroid hormones (5 microg thyroxine (T(4)) and tri-iodothyronine (T(3)) 100 g(-1) body mass or 10 microg T(4) and T(3) 100 g(-1) body mass). Serum and tissue samples (cardiac, pectoralis and semimembranosus leg muscle, liver, pituitary and cerebral cortex) were collected from these four groups, and from a group of untreated controls, at 8 weeks of age. Development of duckling morphology was retarded in methimazole-treated birds compared with that in euthyroid controls, as evidenced by differences in skeletal dimensions, primary feather length, and body and muscle masses. Body mass was lower by 18%, and relative masses of cardiac and pectoralis muscles were lower by 28% and 32% respectively. Heterologous oligonucleotides for TR alpha, TR beta 0, TR beta2 and the housekeeping gene beta-actin were derived from chicken sequences. RT-PCR showed that TR alpha mRNA was expressed in all tissues but was not significantly affected by any of the experimental treatments. TR beta 0 mRNA expression was significantly lower in the leg muscles of ducklings treated with 12 mg methimazole 100 g(-1) body mass (0.109+/-0.047 TR:beta-actin ratio, P<0.05) compared with that in euthyroid controls (0.380+/-0.202), but was unaltered in the pectoralis and cardiac muscles. Expression of TR beta 0 mRNA was significantly higher in pectoralis (by 3.5-fold, P<0. 05), cardiac (by 4.2-fold, P=0.003) and leg (by 4.0-fold, P<0.001) muscles of ducklings treated with thyroid hormones compared with those in euthyroid controls (0.098+/-0.019, 0.822+/-0.297 and 0. 38+/-0.202 TR:beta-actin respectively). Only the pituitary gland expressed significant levels of TR beta 2 mRNA.


Sign in / Sign up

Export Citation Format

Share Document