scholarly journals Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications

2019 ◽  
Vol 41 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Panpan Chen ◽  
Barry R Zirkin ◽  
Haolin Chen

Abstract Androgen deficiency (hypogonadism) affects males of all ages. Testosterone replacement therapy (TRT) is effective in restoring serum testosterone and relieving symptoms. TRT, however, is reported to have possible adverse effects in part because administered testosterone is not produced in response to the hypothalamic–pituitary–gonadal (HPG) axis. Progress in stem cell biology offers potential alternatives for treating hypogonadism. Adult Leydig cells (ALCs) are generated by stem Leydig cells (SLCs) during puberty. SLCs persist in the adult testis. Considerable progress has been made in the identification, isolation, expansion and differentiation of SLCs in vitro. In addition to forming ALCs, SLCs are multipotent, with the ability to give rise to all 3 major cell lineages of typical mesenchymal stem cells, including osteoblasts, adipocytes, and chondrocytes. Several regulatory factors, including Desert hedgehog and platelet-derived growth factor, have been reported to play key roles in the proliferation and differentiation of SLCs into the Leydig lineage. In addition, stem cells from several nonsteroidogenic sources, including embryonic stem cells, induced pluripotent stem cells, mature fibroblasts, and mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord have been transdifferentiated into Leydig-like cells under a variety of induction protocols. ALCs generated from SLCs in vitro, as well as Leydig-like cells, have been successfully transplanted into ALC-depleted animals, restoring serum testosterone levels under HPG control. However, important questions remain, including: How long will the transplanted cells continue to function? Which induction protocol is safest and most effective? For translational purposes, more work is needed with primate cells, especially human.

Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3254-3262 ◽  
Author(s):  
Massimo Giuliani ◽  
Noufissa Oudrhiri ◽  
Zaeem M. Noman ◽  
Amelia Vernochet ◽  
Salem Chouaib ◽  
...  

Abstract A major issue in immunosuppressive biotherapy is the use of mesenchymal stem cells (MSCs) that harbor regulatory capacity. However, currently used bone marrow-derived MSCs (BM-MSCs) are short-lived and cannot assure long lasting immunoregulatory function both in vitro and in vivo. Consequently, we have generated MSCs from human induced pluripotent stem (IPS-MSCs) cells that share similar properties with embryonic stem cells (ES-MSCs). Herein, we compared the immunoregulatory properties of ES/IPS-MSCs with those of BM-MSCs and showed, for the first time, that IPS-derived MSCs display remarkable inhibition of NK-cell proliferation and cytolytic function in a similar way to ES-MSCs. Both MSCs disrupt NK-cell cytolytic machinery in the same fashion that BM-MSCs, by down-regulating the expression of different activation markers and ERK1/2 signaling, leading to an impairment to form immunologic synapses with target cells and, therefore, secretion of cytotoxic granules. In addition, they are more resistant than adult BM-MSCs to preactivated NK cells. IPS-MSCs could represent an attractive alternative source of immunoregulatory cells, and their capacity to impair NK-cell cytotoxicity constitutes a complex mechanism to prevent allograft rejection.


2013 ◽  
Vol 91 (12) ◽  
pp. 985-998 ◽  
Author(s):  
Sreejit Parameswaran ◽  
Sujeet Kumar ◽  
Rama Shanker Verma ◽  
Rajendra K. Sharma

The success of any work with isolated cardiomyocytes depends on the reproducibility of cell isolation, because the cells do not divide. To date, there is no suitable in vitro model to study human adult cardiac cell biology. Although embryonic stem cells and induced pluripotent stem cells are able to differentiate into cardiomyocytes in vitro, the efficiency of this process is low. Isolation and expansion of human cardiomyocyte progenitor cells from cardiac surgical waste or, alternatively, from fetal heart tissue is another option. However, to overcome various issues related to human tissue usage, especially ethical concerns, researchers use large- and small-animal models to study cardiac pathophysiology. A simple model to study the changes at the cellular level is cultures of cardiomyocytes. Although primary murine cardiomyocyte cultures have their own advantages and drawbacks, alternative strategies have been developed in the last two decades to minimise animal usage and interspecies differences. This review discusses the use of freshly isolated murine cardiomyocytes and cardiomyocyte alternatives for use in cardiac disease models and other related studies.


Author(s):  
Pouria Samadi ◽  
Sahar Saki ◽  
Hamed Manoochehri Khoshinani ◽  
Mohsen Sheykhhasan

: Mesenchymal stem cells (MSCs) are one of the most common types of adult stem cells. While MSCs are traditionally isolated from bone marrow, over the last few years, they have also been found in many other adult tissues such as liver, cord blood, placenta, dental pulp and adipose tissue. They have been investigated as a marvelous cell source for tissue regeneration and suggested as a therapy in non-autologous application, because of lack of MHC class II expression. For the past several decades, furthermore, MSCs show promise as a therapeutic strategy in medicine. Many advantages such as self-renewal, in vitro proliferation, rapid cell doubling capacity, easy of GMP manufacturing, antifibrotic, anti-apoptotic, anti-inflammation, immunomodulatory and immunosuppressive effects, and paracrine nature have been demonstrated in various pre-clinical studies and clinical evidences. The ability of MSCs to differentiate into different cell lineages, in addition to the lack of ethical problems in comparison with embryonic stem cells as well as induced Pluripotent Stem cells (iPSCs), have attracted much attention. Due to their unique features, various medical indications such as therapeutic medicine, tissue engineering, and cell therapy have allowed the development and flourishment of MSCs. The various different clinical trials were performed using MSCs for the treatment of a long list of diseases and disorders. Results of these clinical studies have demonstrated the capability of MSCs to be used for the treatment of dermatological, musculoskeletal, neurological, cardiovascular, respiratory, renal, gastroenterological and urological conditions, etc.


2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2019 ◽  
Vol 12 (6) ◽  
pp. 916-924 ◽  
Author(s):  
Erma Safitri ◽  
Mas'ud Hariadi

Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus). Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T–), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS. Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T–, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T– and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T–, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T–. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1. Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.


2016 ◽  
Vol 4 (20) ◽  
pp. 3482-3489 ◽  
Author(s):  
Giuliana E. Salazar-Noratto ◽  
Frank P. Barry ◽  
Robert E. Guldberg

Disease-specific pluripotent stem cells can be derived through genetic manipulation of embryonic stem cells or by reprogramming somatic cells (induced pluripotent stem cells).


2020 ◽  
Author(s):  
Jiaxing Wang ◽  
Ping Long ◽  
Shengnan Tian ◽  
Weihua Zu ◽  
Jing Liu ◽  
...  

Abstract Background Extravillous trophoblast (EVT) cells play an essential role in the maternal-fetal interaction. Although abnormal development and function of EVT cells, including impaired migration and invasion capability, are believed to be etiologically linked to severe pregnancy disorders including pre-eclampsia (PE), the associated molecular mechanisms are not clear ascribed to the lack of an appropriate cell model in vitro. Cyclosporine A (CsA) is a macrolide immunosuppressant and is also used in clinic to improve pregnancy outcomes. However, whether CsA has any effects on the function of EVT cells has not been well investigated. Methods In this study, we induced differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) into EVT cells (hiPSC-EVT and hESC-EVT cells, respectively) by Y27632, NRG1, A83-01 and matrigel, and collected these derived EVT cells by flow cytometry for sorting cells positive for double HLA-G and KRT7, which are EVT markers. We then investigated the effects of CsA on the invasion and migration of these derived EVT cells. Results We found that the hiPSC-EVT and hESC-EVT cells expressed high levels of the EVT markers such as KRT7, ITGA5 and HLA-G but low levels of OCT4, a stem cell marker, and that CsA significantly promoted the invasion and migration of hiPSC-EVT and hESC-EVT cells. Conclusions We successfully generated hiPSC/hESC-derived human EVT cells, which may be applicable for investigating the remodeling process of spiral arteries remodeling and the possible mechanisms of EVT-related diseases in vitro. Furthermore, our findings provide direct evidence that CsA regulates the function of EVT cells and molecular basis by which CsA may be used to treat pregnancy complications in clinic associated with deficient EVT function.


2018 ◽  
Vol 27 (9) ◽  
pp. 1340-1351 ◽  
Author(s):  
Dan Wang ◽  
Yue-Qi Sun ◽  
Wen-Xiang Gao ◽  
Xing-Liang Fan ◽  
Jian-Bo Shi ◽  
...  

Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) represent a promising cell source for patient-specific cell therapy. We previously demonstrated that they display an immunomodulatory effect on allergic airway inflammation. Glucocorticoids are powerful anti-inflammatory compounds and widely used in the therapy of allergic diseases. However, the effect of glucocorticoids on the immunomodulatory function of iPSC-MSCs remains unknown. This study aimed to determine the effect of dexamethasone (Dex) on the immunomodulatory function of iPSC-MSCs in vitro and in vivo. A total of three human iPSC-MSC clones were generated from amniocyte-derived iPSCs. Anti-CD3/CD28-induced peripheral blood mononuclear cell (PBMC) proliferation was used to assess the effect of Dex on the immunoinhibitory function of iPSC-MSCs in vitro. Mouse models of contact hypersensitivity (CHS) and allergic airway inflammation were induced, and the levels of inflammation in mice were analyzed with the treatments of iPSC-MSCs and Dex, alone and combined. The results showed that Dex did not interfere with the immunoinhibitory effect of iPSC-MSCs on PBMC proliferation. In CHS mice, simultaneous treatment with Dex did not affect the effect of iPSC-MSCs on the inflammation, both in regional draining lymph nodes and in inflamed ear tissue. In addition, co-administration of iPSC-MSCs with Dex decreased the local expression of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the ears of CHS mice. In the mouse model of allergic airway inflammation, iPSC-MSC treatment combined with Dex resulted in a similar extent of reduction in pulmonary inflammation as iPSC-MSCs or Dex treatment alone. In conclusion, Dex does not significantly affect the immunomodulatory function of iPSC-MSCs both in vitro and in vivo. These findings may have implications when iPSC-MSCs and glucocorticoids are co-administered.


Sign in / Sign up

Export Citation Format

Share Document