scholarly journals Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice

2008 ◽  
Vol 29 (6) ◽  
pp. 726-776 ◽  
Author(s):  
Roger Bouillon ◽  
Geert Carmeliet ◽  
Lieve Verlinden ◽  
Evelyne van Etten ◽  
Annemieke Verstuyf ◽  
...  

Abstract The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)2D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1α-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)2D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1α-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.

2009 ◽  
Vol 105 (02) ◽  
pp. 103-108 ◽  
Author(s):  
F. Rauch ◽  
A. Radermacher ◽  
A. Danz ◽  
U. Schiedermaier ◽  
A. Golücke ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
James P. Whitcomb ◽  
Mary DeAgostino ◽  
Mark Ballentine ◽  
Jun Fu ◽  
Martin Tenniswood ◽  
...  

Vitamin D signaling modulates a variety of immune responses. Here, we assessed the role of vitamin D in immunity to experimental leishmaniasis infection in vitamin D receptor-deficient mice (VDRKO). We observed that VDRKO mice on a genetically resistant background have decreasedLeishmania major-induced lesion development compared to wild-type (WT) mice; additionally, parasite loads in infected dermis were significantly lower at the height of infection. Enzymatic depletion of the active form of vitamin D mimics the ablation of VDR resulting in an increased resistance toL. major. Conversely, VDRKO or vitamin D-deficient mice on the susceptible Th2-biased background had no change in susceptibility. These studies indicate vitamin D deficiency, either through the ablation of VDR or elimination of its ligand, 1,25D3, leads to an increase resistance toL. majorinfection but only in a host that is predisposed for Th-1 immune responses.


2018 ◽  
Vol 27 (03) ◽  
pp. 129-134 ◽  
Author(s):  
B. M. Holzapfel ◽  
F. Jakob ◽  
A. A. Kurth ◽  
G. Maier ◽  
K. Horas

SummaryVitamin D deficiency is a global health problem of enormous and increasing dimensions. In the past decades, numerous studies have centered on the role of vitamin D in the pathogenesis and course of many diseases including several types of cancer. Indeed, vitamin D has been widely acknowledged to be involved in the regulation of cell proliferation, differentiation and apoptosis in numerous cancer cells. While the full range of molecular mechanisms involveld in cancer cell growth and progression remains to be elucidated, recent research has deepened our understanding of the processes that may be affected by vitamin D or vitamin D deficiency.In this review, we consider the properties of bone that enable cancer cells to grow and thrive within the skeleton, and the role of vitamin D and the vitamin D receptor in the process of primary and secondary cancer growth in bone.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Ziad Harb ◽  
Arfan Malhi

Fractures involving the proximal tibial epiphysis are rare and form 0.5% of all epiphyseal injuries. The specific anatomical and developmental features of the proximal tibial epiphysis make it vulnerable to unique patterns of fractures. Vitamin-D plays a vital role in bone homeostasis and its deficiency has an impact on fracture risk and healing. We present the first ever reported case of simultaneous bilateral proximal tibial physeal fractures in an athlete with vitamin-D deficiency. Treatment consisted of plaster immobilisation, and the patient made a full recovery and returned to preinjury level of activities. We report this case for its uniqueness and as an educational review of the importance of the developmental anatomy of the proximal tibia. We review the literature and discuss how the stages of the growing physis determine the type of fracture sustained.


1997 ◽  
Vol 52 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Günter Klaus ◽  
Tanja May ◽  
Ulrike Hügel ◽  
Barbara Von Eichel ◽  
Julian Rodriguez ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Arash Hossein-Nezhad ◽  
Seyede Mahdieh Eshaghi ◽  
Zhila Maghbooli ◽  
Khadijeh Mirzaei ◽  
Mahmood Shirzad ◽  
...  

We determined the association of vitamin D deficiency and the FokI polymorphism of the vitamin D receptor (VDR) gene in 760 patients who underwent angiography due to suspected coronary artery disease (CAD). Angiography and the Rentrop scoring system were used to classify the severity of CAD in each patient and to grade the extent of collateral development, respectively. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the FokI VDR gene polymorphism. The prevalence of severe vitamin D deficiency (serum 25(OH)D < 10 ng/mL) was significantly higher in patients with at least one stenotic coronary artery compared to those without any stenotic coronary arteries. Severe vitamin D deficiency was not independently associated with collateralization, but it was significantly associated with the VDR genotypes. In turn, VDR genotype was independently associated with the degree of collateralization; the Rentrop scores were the highest in FF, intermediate in Ff, and the lowest in the ff genotype. The results show that FokI polymorphism is independently associated with collateralization. Additionally, vitamin D deficiency is more prevalent in patients with CAD that may result from FokI polymorphism. Therefore, maintaining a normal vitamin D status should be a high priority for patients with CAD.


2011 ◽  
Vol 23 (5) ◽  
pp. 725 ◽  
Author(s):  
Leila Zanatta ◽  
Hélène Bouraïma-Lelong ◽  
Christelle Delalande ◽  
Fátima R. M. B. Silva ◽  
Serge Carreau

It is well known that the vitamin D endocrine system is involved in physiological and biochemical events in numerous tissues, especially gut, bone and kidney but also testis. Therefore, in this study the effect and mechanisms of action of 1α,25(OH)2 vitamin D3 (1,25D) on aromatase gene expression in immature rat Sertoli cells were evaluated. Vitamin D receptor transcripts were present in immature Sertoli cells as well as in adult testicular germ cells and somatic cells. The treatment of immature Sertoli cells with 100 nM 1,25D increased the amount of aromatase transcript, mainly in 30-day-old rats. The protein kinase A (PKA) blocker, H89, partially inhibited the 1,25D effect. The stimulation of aromatase gene expression in 30-day-old Sertoli cells by the agonist 1α,25(OH)2 lumisterol3, and the suppression of the 1,25D effect by the antagonists 1β,25(OH)2 vitamin D3 and (23S)-25-dehydro-1α (OH)-vitamin D3-26,23-lactone suggested, besides a genomic effect of 1,25D, the existence of non-genomic activation of the membrane-bound vitamin D receptor involving the PKA pathway.


2004 ◽  
Vol 173 (5) ◽  
pp. 3432-3436 ◽  
Author(s):  
Anja Wittke ◽  
Veronika Weaver ◽  
Brett D. Mahon ◽  
Avery August ◽  
Margherita T. Cantorna

Sign in / Sign up

Export Citation Format

Share Document