scholarly journals The Akt-Specific Inhibitor MK2206 Selectively Inhibits Thyroid Cancer Cells Harboring Mutations That Can Activate the PI3K/Akt Pathway

2011 ◽  
Vol 96 (4) ◽  
pp. E577-E585 ◽  
Author(s):  
Ruixin Liu ◽  
Dingxie Liu ◽  
Eliana Trink ◽  
Ermal Bojdani ◽  
Guang Ning ◽  
...  

Abstract Context: The phosphoinositide 3-kinase (PI3K)/Akt pathway is widely postulated to be an effective therapeutic target in thyroid cancer. Objective: The aim of the study was to test the therapeutic potential of the novel Akt inhibitor MK2206 for thyroid cancer. Design: We examined the effects of MK2206 on thyroid cancer cells with respect to the genotypes of the PI3K/Akt pathway. Results: Proliferation of thyroid cancer cells OCUT1, K1, FTC133, C643, Hth7, and TPC1, which harbored PIK3CA, PTEN, Ras, or RET/PTC mutations that could activate the PI3K/Akt pathway, was potently inhibited by MK2206 with IC50 values mostly below or around 0.5 μm. In contrast, no potent inhibition by MK2206 was seen in most of the Hth74, KAT18, SW1736, WRO, and TAD2 cells that did not harbor mutations in the PI3K/Akt pathway. The inhibition efficacy was also genetic-selective. Specifically, the average inhibition efficacies were 59.2 ± 11.3 vs. 36.4 ± 8.8% (P = 0.005) at 1 μm MK2206 and 64.4 ± 11.5 vs. 38.5 ± 18.9% (P = 0.02) at 3 μm MK2206 for cells with mutations vs. cells without. The SW1736 cell, lacking mutations in the PI3K/Akt pathway, had minimal response to MK2206, but transfection with exogenous PIK3CA mutants, PIK3CA H1047R and E545K, significantly increased its sensitivity to MK2206. MK2206 also completely overcame the feedback activation of Akt from temsirolimus-induced mammalian target of rapamycin suppression, and the two inhibitors synergistically inhibited thyroid cancer cell growth. Conclusions: Our study demonstrates a genetic selectivity of MK2206 in inhibiting thyroid cancer cells by targeting the PI3K/Akt pathway, supporting a clinical trial in thyroid cancer.

2011 ◽  
Vol 25 (3) ◽  
pp. 546-546
Author(s):  
Ruixin Liu ◽  
Dingxie Liu ◽  
Eliana Trink ◽  
Ermal Bojdani ◽  
Guang Ning ◽  
...  

In Vivo ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 375-382 ◽  
Author(s):  
SE EUN HAN ◽  
CHAN HO PARK ◽  
IL SUNG NAM-GOONG ◽  
YOUNG IL KIM ◽  
EUN SOOK KIM

2005 ◽  
Vol 92 (10) ◽  
pp. 1899-1905 ◽  
Author(s):  
M Mandal ◽  
S Kim ◽  
M N Younes ◽  
S A Jasser ◽  
A K El-Naggar ◽  
...  

2010 ◽  
Vol 95 (2) ◽  
pp. 820-828 ◽  
Author(s):  
Peng Hou ◽  
Ermal Bojdani ◽  
Mingzhao Xing

Abstract Context: Radioiodine ablation is commonly used to treat thyroid cancer, but a major challenge is often the loss of radioiodine avidity of the cancer caused by aberrant silencing of iodide-handling genes. Objectives: This study was conducted to test the therapeutic potential of targeting the aberrantly activated MAPK and PI3K/Akt/mTOR pathways and histone deacetylase to restore radioiodine avidity in thyroid cancer cells. Experimental Design: We tested the effects of specific inhibitors targeting these pathways/molecules that had established clinical applicability, including the MAPK kinase inhibitor RDEA119, mTOR inhibitor temsirolimus, Akt inhibitor perifosine, and histone deacetylase inhibitor SAHA, individually or in combinations, on the expression of iodide-handling genes and radioiodide uptake in a large panel of thyroid cancer cell lines. Results: The expression of a large number of iodide-handling genes could be restored, particularly the sodium/iodide symporter, TSH receptor, and thyroperoxidase, by treating cells with these inhibitors. The effect was particularly robust and synergistic when combinations of inhibitors containing SAHA were used. Robust expression of sodium/iodide symporter in the cell membrane, which plays the most important role in iodide uptake in thyroid cells, was confirmed by immunofluorescent microscopy. Radioiodide uptake by cells was correspondingly induced under these conditions. Thyroid gene expression and radioiodide uptake could both be further enhanced by TSH. Conclusions: Targeting major signaling pathways could restore thyroid gene expression and radioiodide uptake in thyroid cancer cells. Further studies are warranted to test this therapeutic potential in restoring radioiodine avidity of thyroid cancer cells for effective ablation treatment.


Sign in / Sign up

Export Citation Format

Share Document