scholarly journals Succinate Dehydrogenase (SDH) D Subunit (SDHD) Inactivation in a Growth-Hormone-Producing Pituitary Tumor: A New Association for SDH?

2012 ◽  
Vol 97 (3) ◽  
pp. E357-E366 ◽  
Author(s):  
Paraskevi Xekouki ◽  
Karel Pacak ◽  
Madson Almeida ◽  
Christopher A. Wassif ◽  
Pierre Rustin ◽  
...  

Background: Mutations in the subunits B, C, and D of succinate dehydrogenase (SDH) mitochondrial complex II have been associated with the development of paragangliomas (PGL), gastrointestinal stromal tumors, papillary thyroid and renal carcinoma (SDHB), and testicular seminoma (SDHD). Aim: Our aim was to examine the possible causative link between SDHD inactivation and somatotropinoma. Patients and Methods: A 37-yr-old male presented with acromegaly and hypertension. Other family members were found with PGL. Elevated plasma and urinary levels of catecholamines led to the identification of multiple PGL in the proband in the neck, thorax, and abdomen. Adrenalectomy was performed for bilateral pheochromocytomas (PHEO). A GH-secreting macroadenoma was also found and partially removed via transsphenoidal surgery (TTS). Genetic analysis revealed a novel SDHD mutation (c.298_301delACTC), leading to a frame shift and a premature stop codon at position 133 of the protein. Loss of heterozygosity for the SDHD genetic locus was shown in the GH-secreting adenoma. Down-regulation of SDHD protein in the GH-secreting adenoma by immunoblotting and immunohistochemistry was found. A literature search identified other cases of multiple PGL and/or PHEO in association with pituitary tumors. Conclusion: We describe the first kindred with a germline SDHD pathogenic mutation, inherited PGL, and acromegaly due to a GH-producing pituitary adenoma. SDHD loss of heterozygosity, down-regulation of protein in the GH-secreting adenoma, and decreased SDH enzymatic activity supports SDHD's involvement in the pituitary tumor formation in this patient. Older cases of multiple PGL and PHEO and pituitary tumors in the literature support a possible association between SDH defects and pituitary tumorigenesis.

2013 ◽  
Vol 45 (15) ◽  
pp. 667-683 ◽  
Author(s):  
Jessica H. Geahlen ◽  
Carlo Lapid ◽  
Kaisa Thorell ◽  
Igor Nikolskiy ◽  
Won Jae Huh ◽  
...  

In a screen for genes expressed specifically in gastric mucous neck cells, we identified GKN3, the recently discovered third member of the gastrokine family. We present confirmatory mouse data and novel porcine data showing that mouse GKN3 expression is confined to mucous cells of the corpus neck and antrum base and is prominently expressed in metaplastic lesions. GKN3 was proposed originally to be expressed in some human populations and a pseudogene in others. To investigate that hypothesis, we studied human GKN3 evolution in the context of its paralogous genomic neighbors, GKN1 and GKN2. Haplotype analysis revealed that GKN3 mimics GKN2 in patterns of exonic SNP allocation, whereas GKN1 appeared to be more stringently selected. GKN3 showed signatures of both directional selection and population based selective sweeps in humans. One such selective sweep includes SNP rs10187256, originally identified as an ancestral tryptophan to premature STOP codon mutation. The derived (nonancestral) allele went to fixation in Asia. We show that another SNP, rs75578132, identified 5 bp downstream of rs10187256, exhibits a second selective sweep in almost all Europeans, some Latinos, and some Africans, possibly resulting from a reintroduction of European genes during African colonization. Finally, we identify a mutation that would destroy the splice donor site in the putative exon3-intron3 boundary, which occurs in all human genomes examined to date. Our results highlight a stomach-specific human genetic locus, which has undergone various selective sweeps across European, Asian, and African populations and thus reflects geographic and ethnic patterns in genome evolution.


2020 ◽  
Vol 4 (12) ◽  
Author(s):  
Sunita M C De Sousa ◽  
John Toubia ◽  
Tristan S E Hardy ◽  
Jinghua Feng ◽  
Paul Wang ◽  
...  

Abstract Context Germline mutations in the succinate dehydrogenase genes (SDHA/B/C/D, SDHAF2—collectively, “SDHx”) have been implicated in paraganglioma (PGL), renal cell carcinoma (RCC), gastrointestinal stromal tumor (GIST), and pituitary adenoma (PA). Negative SDHB tumor staining is indicative of SDH-deficient tumors, usually reflecting an underlying germline SDHx mutation. However, approximately 20% of individuals with SDH-deficient tumors lack an identifiable germline SDHx mutation. Methods We performed whole-exome sequencing (WES) of germline and tumor DNA followed by Sanger sequencing validation, transcriptome analysis, metabolomic studies, and haplotype analysis in 2 Italian-Australian families with SDH-deficient PGLs and various neoplasms, including RCC, GIST, and PA. Results Germline WES revealed a novel SDHC intronic variant, which had been missed during previous routine testing, in 4 affected siblings of the index family. Transcriptome analysis demonstrated aberrant SDHC splicing, with the retained intronic segment introducing a premature stop codon. WES of available tumors in this family showed chromosome 1 deletion with loss of wild-type SDHC in a PGL and a somatic gain-of-function KIT mutation in a GIST. The SDHC intronic variant identified was subsequently detected in the second family, with haplotype analysis indicating a founder effect. Conclusions This is the deepest intronic variant to be reported among the SDHx genes. Intronic variants beyond the limits of standard gene sequencing analysis should be considered in patients with SDH-deficient tumors but negative genetic test results.


2004 ◽  
pp. 433-438 ◽  
Author(s):  
B Zantour ◽  
B Guilhaume ◽  
F Tissier ◽  
A Louvel ◽  
X Jeunemaitre ◽  
...  

A 32-year-old asymptomatic female was diagnosed with an isolated thyroid nodule of 2.5 cm diameter. Fine needle aspiration suggested a medullary thyroid carcinoma. Consequently, a total thyroidectomy was performed. The nodule stained positive for chromogranin A, neurone-specific enolase and synaptophysin, but not for calcitonin. Finally, pathological analysis showed a thyroid paraganglioma. Although the tumour appeared to be sporadic in a patient with no personal or familial history of paraganglioma and/or pheochromocytoma, we have identified a new mutation (392delC) of the succinate dehydrogenase-B (SDHB) gene in the genomic DNA extracted from the leukocytes of the patient. That mutation induced a shift in the reading frame of the gene creating a premature stop codon (P131fsX135) which was predicted to result in a truncated SDHB protein of 135 amino acids.This report highlights the difficulties of this unexpected diagnosis of hereditary thyroid paraganglioma. It also discusses the clinical involvements in terms of familial screening and the necessary follow-up of the patient.


1996 ◽  
Vol 75 (06) ◽  
pp. 870-876 ◽  
Author(s):  
José Manuel Soria ◽  
Lutz-Peter Berg ◽  
Jordi Fontcuberta ◽  
Vijay V Kakkar ◽  
Xavier Estivill ◽  
...  

SummaryNonsense mutations, deletions and splice site mutations are a common cause of type I protein C deficiency. Either directly or indirectly by altering the reading frame, these' lesions generate or may generate premature stop codons and could therefore be expected to result in premature termination of translation. In this study, the possibility that such mutations could instead exert their pathological effects at an earlier stage in the expression pathway, through “allelic exclusion” at the RNA level, was investigated. Protein C (PROC) mRNA was analysed in seven Spanish type I protein C deficient patients heterozygous for two nonsense mutations, a 7bp deletion, a 2bp insertion and three splice site mutations. Ectopic RNA transcripts from patient and control lymphocytes were analysed by RT-PCR and direct sequencing of amplified PROC cDNA fragments. The nonsense mutations and the deletion were absent from the cDNAs indicating that only mRNA derived from the normal allele had been expressed. Similarly for the splice site mutations, only normal PROC cDNAs were obtained. In one case, exclusion of the mutated allele could be confirmed by polymorphism analysis. In contrast to these six mutations, the 2 bp insertion was not associated with loss of mRNA from the mutated allele. In this case, cDNA analysis revealed the absence of 19 bases from the PROC mRNA consistent with the generation and utilization of a cryptic splice site 3’ to the site of mutation, which would result in a frameshift and a premature stop codon. It is concluded that allelic exclusion is a common causative mechanism in those cases of type I protein C deficiency which result from mutations that introduce premature stop codons


Biochemistry ◽  
2019 ◽  
Vol 59 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Debaleena Kar ◽  
Karthi Sellamuthu ◽  
Sangeetha Devi Kumar ◽  
Sandeep M. Eswarappa

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 411
Author(s):  
María Lachgar ◽  
Matías Morín ◽  
Manuela Villamar ◽  
Ignacio del Castillo ◽  
Miguel Ángel Moreno-Pelayo

Nonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.832_836delCCTCA) identified in a Spanish family by using a custom NGS targeted gene panel (OTO-NGS-v2). This frameshift mutation produces a premature stop codon that may lead in the absence of NMD to a shorter variant (p.Pro278Alafs*10) that truncates HOMER2 at the CDC42 binding domain (CBD) of the coiled-coil structure, a region that is essential for protein multimerization and HOMER2-CDC42 interaction. c.832_836delCCTCA mutation is placed close to the previously identified c.840_840dup mutation found in a Chinese family that truncates the protein (p.Met281Hisfs*9) at the CBD. Functional assessment of the Chinese mutant revealed decreased protein stability, reduced ability to multimerize, and altered distribution pattern in transfected cells when compared with wild-type HOMER2. Interestingly, the Spanish and Chinese frameshift mutations might exert a similar effect at the protein level, leading to truncated mutants with the same Ct aberrant protein tail, thus suggesting that they can share a common mechanism of pathogenesis. Indeed, age-matched patients in both families display quite similar hearing loss phenotypes consisting of early-onset, moderate-to-profound progressive hearing loss. In summary, we have identified the third variant in HOMER2, which is the first one identified in the Spanish population, thus contributing to expanding the mutational spectrum of this gene in other populations, and also to clarifying the genotype–phenotype correlations of DFNA68 hearing loss.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 934
Author(s):  
Donato Gemmati ◽  
Giovanna Longo ◽  
Eugenia Franchini ◽  
Juliana Araujo Silva ◽  
Ines Gallo ◽  
...  

Inherited thrombophilia (e.g., venous thromboembolism, VTE) is due to rare loss-of-function mutations in anticoagulant factors genes (i.e., SERPINC1, PROC, PROS1), common gain-of-function mutations in procoagulant factors genes (i.e., F5, F2), and acquired risk conditions. Genome Wide Association Studies (GWAS) recently recognized several genes associated with VTE though gene defects may unpredictably remain asymptomatic, so calculating the individual genetic predisposition is a challenging task. We investigated a large family with severe, recurrent, early-onset VTE in which two sisters experienced VTE during pregnancies characterized by a perinatal in-utero thrombosis in the newborn and a life-saving pregnancy-interruption because of massive VTE, respectively. A nonsense mutation (CGA > TGA) generating a premature stop-codon (c.1171C>T; p.R391*) in the exon 6 of SERPINC1 gene (1q25.1) causing Antithrombin (AT) deficiency and the common missense mutation (c.1691G>A; p.R506Q) in the exon 10 of F5 gene (1q24.2) (i.e., FV Leiden; rs6025) were coinherited in all the symptomatic members investigated suspecting a cis-segregation further confirmed by STR-linkage-analyses [i.e., SERPINC1 IVS5 (ATT)5–18, F5 IVS2 (AT)6–33 and F5 IVS11 (GT)12–16] and SERPINC1 intragenic variants (i.e., rs5878 and rs677). A multilocus investigation of blood-coagulation balance genes detected the coexistence of FV Leiden (rs6025) in trans with FV HR2-haplotype (p.H1299R; rs1800595) in the aborted fetus, and F11 rs2289252, F12 rs1801020, F13A1 rs5985, and KNG1 rs710446 in the newborn and other members. Common selected gene variants may strongly synergize with less common mutations tuning potential life-threatening conditions when combined with rare severest mutations. Merging classic and newly GWAS-identified gene markers in at risk families is mandatory for VTE risk estimation in the clinical practice, avoiding partial risk score evaluation in unrecognized at risk patients.


Sign in / Sign up

Export Citation Format

Share Document