scholarly journals Dominant Inhibition of Thyroid Hormone Action Selectively in the Pituitary of Thyroid Hormone Receptor-β Null Mice Abolishes the Regulation of Thyrotropin by Thyroid Hormone

2003 ◽  
Vol 17 (9) ◽  
pp. 1767-1776 ◽  
Author(s):  
E. Dale Abel ◽  
Egberto G. Moura ◽  
Rexford S. Ahima ◽  
Angel Campos-Barros ◽  
Carmen C. Pazos-Moura ◽  
...  

Abstract Thyroid hormones, T4 and T3, regulate their own production by feedback inhibition of TSH and TRH synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) that interact with the promoters of the genes for the TSH subunit and TRH. All TR isoforms are believed to be involved in the regulation of this endocrine axis, as evidenced by the massive dysregulation of TSH production in mice lacking all TR isoforms. However, the relative contributions of TR isoforms in the pituitary vs. the hypothalamus remain to be completely elucidated. Thus, to determine the relative contribution of pituitary expression of TR-α in the regulation of the hypothalamic-pituitary-thyroid axis, we selectively impaired TR-α function in TR-β null mice (TR-β−/−) by pituitary restricted expression of a dominant negative TR-β transgene harboring a Δ337T mutation. These animals exhibited 10-fold and 32-fold increase in T4 and TSH concentrations, respectively. Moreover, the negative regulation of TSH by exogenous T3 was completely absent and a paradoxical increase in TSH concentrations and TSH-β mRNA was observed. In contrast, prepro-TRH expression levels in T3-treated TR-β−/− were similar to levels observed in the Δ337/TR-β−/− mice, and ligand-independent activation of TSH in hypothyroid mice was equivalently impaired. Thus, isolated TR-β deficiency in TRH paraventricular hypothalamic nucleus neurons and impaired function of all TRs in the pituitary recapitulate the baseline hormonal disturbances that characterize mice with complete absence of all TRs.

2010 ◽  
Vol 44 (4) ◽  
pp. 247-255 ◽  
Author(s):  
Alok Mishra ◽  
Xu-guang Zhu ◽  
Kai Ge ◽  
Sheue-Yann Cheng

To understand the roles of thyroid hormone receptors (TRs) in adipogenesis, we adopted a loss-of-function approach. We generated 3T3-L1 cells stably expressing either TRα1 mutant (TRα1PV) or TRβ1 mutant (TRβ1PV). TRα1PV and TRβ1PV are dominant negative mutations with a frameshift in the C-terminal amino acids. In control cells, the thyroid hormone, tri-iodothyronine (T3), induced a 2.5-fold increase in adipogenesis in 3T3-L1 cells, as demonstrated by increased lipid droplets. This increase was mediated by T3-induced expression of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are master regulators of adipogenesis at both the mRNA and protein levels. In 3T3-L1 cells stably expressing TRα1PV (L1-α1PV cells) or TRβ1PV (L1-β1PV cells), adipogenesis was reduced 94 or 54% respectively, indicative of differential inhibitory activity of mutant TR isoforms. Concordantly, the expression of PPARγ and C/EBPα at the mRNA and protein levels was more repressed in L1-α1PV cells than in L1-β1PV cells. In addition, the expression of PPARγ downstream target genes involved in fatty acid synthesis – the lipoprotein lipase (Lpl) and aP2 involved in adipogenesis – was more inhibited by TRα1PV than by TRβ1PV. Chromatin immunoprecipitation assays showed that TRα1PV was more avidly recruited than TRβ1PV to the promoter to preferentially block the expression of the C/ebpα gene. Taken together, these data indicate that impaired adipogenesis by mutant TR is isoform dependent. The finding that induction of adipogenesis is differentially regulated by TR isoforms suggests that TR isoform-specific ligands could be designed for therapeutic intervention for lipid abnormalities.


1993 ◽  
Vol 13 (10) ◽  
pp. 5970-5980
Author(s):  
H W Chen ◽  
M L Privalsky

Genetic lesions that function as dominant negative mutations in microbial systems have long been recognized. It is only relatively recently, however, that similar dominant negative mutations have been implicated as a basis for genetic and neoplastic disorders in vertebrates. We describe here a dissection of the actions of the erbA oncogene protein, an aberrant form of thyroid hormone receptor that acts as a dominant negative inhibitor of other nuclear hormone receptors. We demonstrate that the ErbA oncoprotein interferes with thyroid hormone and trans-retinoic acid receptors by competing for binding to the corresponding response elements. Heterodimerization of the ErbA oncoprotein with these receptors does not play an observable role in repression. In contrast, however, the ErbA oncoprotein does efficiently form a heterodimer with the retinoid X receptor (RXR) class of nuclear hormone receptors; complex formation enhances the DNA-binding properties of the ErbA protein but dramatically interferes with the ability of the RXR component to activate gene expression. Our results indicate that the erbA oncogene may play a previously unanticipated role in neoplasia by interfering with RXR function.


2004 ◽  
Vol 378 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Keiko NAKANO ◽  
Akio MATSUSHITA ◽  
Shigekazu SASAKI ◽  
Hiroko MISAWA ◽  
Kozo NISHIYAMA ◽  
...  

The molecular mechanism involved in the liganded thyroid hormone receptor suppression of the TSHβ (thyroid-stimulating hormone β, or thyrotropin β) gene transcription is undetermined. One of the main reasons is the limitation of useful cell lines for the experiments. We have developed an assay system using non-pituitary CV1 cells and studied the negative regulation of the TSHβ gene. In CV1 cells, the TSHβ–CAT (chloramphenicol acetyltransferase) reporter was stimulated by Pit1 and GATA2 and suppressed by T3 (3,3´,5-tri-iodothyronine)-bound thyroid hormone receptor. The suppression was dependent on the amounts of T3 and the receptor. Unliganded receptor did not stimulate TSHβ activity, suggesting that the receptor itself is not an activator. Analyses using various receptor mutants revealed that the intact DNA-binding domain is crucial to the TSHβ gene suppression. Co-activators and co-repressors are not necessarily essential, but are required for the full suppression of the TSHβ gene. Among the three receptor isoforms, β2 exhibited the strongest inhibition and its protein level was the most predominant in a thyrotroph cell line, TαT1, in Western blotting. The dominant-negative effects of various receptor mutants measured on the TSHβ–CAT reporter were not simple mirror images of those in the positive regulation under physiological T3 concentration.


2020 ◽  
Vol 244 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Ángela Sánchez ◽  
Constanza Contreras-Jurado ◽  
Diego Rodríguez ◽  
Javier Regadera ◽  
Susana Alemany ◽  
...  

Hypothyroidism is often associated with anemia and immunological disorders. Similar defects are found in patients and in mice with a mutated dominant-negative thyroid hormone receptor α (TRα) and in knockout mice devoid of this receptor, suggesting that this isoform is responsible for the effects of the thyroid hormones in hematopoiesis. However, the hematological phenotype of mice lacking also TRβ has not yet been examined. We show here that TRα1/TRβ-knockout female mice, lacking all known thyroid hormone receptors with capacity to bind thyroid hormones, do not have overt anemia and in contrast with hypothyroid mice do not present reduced Gata1 or Hif1 gene expression. Similar to that found in hypothyroidism or TRα deficiency during the juvenile period, the B-cell population is reduced in the spleen and bone marrow of ageing TRα1/TRβ-knockout mice, suggesting that TRβ does not play a major role in B-cell development. However, splenic hypotrophy is more marked in hypothyroid mice than in TRα1/TRβ-knockout mice and the splenic population of T-lymphocytes is not significantly impaired in these mice in contrast with the reduction found in hypothyroidism. Our results show that the overall hematopoietic phenotype of the TRα1/TRβ-knockout mice is milder than that found in the absence of hormone. Although other mechanism/s cannot be ruled out, our results suggest that the unoccupied TRs could have a negative effect on hematopoiesis, likely secondary to repression of hematopoietic gene expression.


2021 ◽  
Author(s):  
Marcus Heldmann ◽  
Krishna Chatterjee ◽  
Carla Moran ◽  
Berenike Rogge ◽  
Julia Steinhardt ◽  
...  

Background: Thyroid hormone action is mediated by two forms of thyroid hormone receptors (α,β) with differential tissue distribution. Thyroid hormone receptor β (TRβ) mutations lead to resistance to thyroid hormone action in tissues predominantly expressing the β form of the receptor (pituitary, liver). This study seeks to identify effects of mutant TRβ on pituitary size. Methods: High-resolution 3D T1-weighted magnetic resonance images were acquired in 19 patients with RTHβ in comparison to 19 healthy matched controls. Volumetric measurements of the pituitary gland were performed independently and blinded by four different raters (two neuroradiologists, one neurologist, one neuroscientist). Results: Patients with mutant TRβ (Resistance to Thyroid Hormone β,RΤΗβ) showed elevated fT3/4 levels with normal TSH levels, whereas healthy controls showed normal thyroid hormone levels. Imaging revealed smaller pituitary size in RTHβ patients in comparison to healthy controls (F(1,35)=7.05, p=0.012, partial η2 =0.17). Conclusion: RTHβ subjects have impaired sensitivity to thyroid hormones, along with decreased size of the pituitary gland.


2006 ◽  
Vol 191 (1) ◽  
pp. 221-228 ◽  
Author(s):  
Bénédicte Rabier ◽  
Allan J Williams ◽  
Frederic Mallein-Gerin ◽  
Graham R Williams ◽  
O Chassande

The active thyroid hormone, triiodothyronine (T3), binds to thyroid hormone receptors (TR) and plays an essential role in the control of chondrocyte proliferation and differentiation. Hypo- and hyperthyroidism alter the structure of growth plate cartilage and modify chondrocyte gene expression in vivo, whilst TR mutations or deletions in mice result in altered growth plate architecture. Nevertheless, the particular roles of individual TR isoforms in mediating T3 action in chondrocytes have not been studied and are difficult to determine in vivo because of complex cellular and molecular interactions that regulate growth plate maturation. Therefore, we studied the effects of TRα and TRβ on chondrocyte growth and differentiation in primary cultures of neonatal rib chondrocytes isolated from TRα- and TRβ-deficient mice. T3 decreased proliferation but accelerated differentiation of rib chondrocytes from wild-type mice. T3 treatment resulted in similar effects in TRα-deficient chondrocytes, but in TRβ-deficient chondrocytes, all T3 responses were abrogated. Furthermore, T3 increased TRβ1 expression in wild-type and TRα-deficient chondrocytes. These data indicate that T3-stimulated differentiation of primary rib chondrocytes in vitro requires TRβ and suggest that the TRβ1 isoform mediates important T3 actions in mouse rib chondrocytes.


1993 ◽  
Vol 13 (10) ◽  
pp. 5970-5980 ◽  
Author(s):  
H W Chen ◽  
M L Privalsky

Genetic lesions that function as dominant negative mutations in microbial systems have long been recognized. It is only relatively recently, however, that similar dominant negative mutations have been implicated as a basis for genetic and neoplastic disorders in vertebrates. We describe here a dissection of the actions of the erbA oncogene protein, an aberrant form of thyroid hormone receptor that acts as a dominant negative inhibitor of other nuclear hormone receptors. We demonstrate that the ErbA oncoprotein interferes with thyroid hormone and trans-retinoic acid receptors by competing for binding to the corresponding response elements. Heterodimerization of the ErbA oncoprotein with these receptors does not play an observable role in repression. In contrast, however, the ErbA oncoprotein does efficiently form a heterodimer with the retinoid X receptor (RXR) class of nuclear hormone receptors; complex formation enhances the DNA-binding properties of the ErbA protein but dramatically interferes with the ability of the RXR component to activate gene expression. Our results indicate that the erbA oncogene may play a previously unanticipated role in neoplasia by interfering with RXR function.


Sign in / Sign up

Export Citation Format

Share Document