scholarly journals Genome-Wide Identification of Estrogen Receptor α-Binding Sites in Mouse Liver

2008 ◽  
Vol 22 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Hui Gao ◽  
Susann Fält ◽  
Albin Sandelin ◽  
Jan-Åke Gustafsson ◽  
Karin Dahlman-Wright

Abstract We report the genome-wide identification of estrogen receptor α (ERα)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERα-binding regions. In agreement with what has previously been reported for human cell lines, many ERα-binding regions are located far away from transcription start sites; approximately 40% of ERα-binding regions are located within 10 kb of annotated transcription start sites. Almost 50% of ERα-binding regions overlap genes. The majority of ERα-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS proteins, and Forkhead proteins as the most common motifs present in identified ERα-binding regions. To correlate ERα binding to the promoter of specific genes, with changes in expression levels of the corresponding mRNAs, expression levels of selected mRNAs were assayed in livers 2, 4, and 6 h after treatment with ERα-selective agonist propyl pyrazole triol. Five of these eight selected genes, Shp, Stat3, Pdgds, Pck1, and Pdk4, all responded to propyl pyrazole triol after 4 h treatment. These results extend our previous studies using gene expression profiling to characterize estrogen signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERα to DNA in intact chromatin.

2008 ◽  
Vol 28 (24) ◽  
pp. 7487-7503 ◽  
Author(s):  
Poornima Bhat-Nakshatri ◽  
Guohua Wang ◽  
Hitesh Appaiah ◽  
Nikhil Luktuke ◽  
Jason S. Carroll ◽  
...  

ABSTRACT Estrogen regulates several biological processes through estrogen receptor α (ERα) and ERβ. ERα-estrogen signaling is additionally controlled by extracellular signal activated kinases such as AKT. In this study, we analyzed the effect of AKT on genome-wide ERα binding in MCF-7 breast cancer cells. Parental and AKT-overexpressing cells displayed 4,349 and 4,359 ERα binding sites, respectively, with ∼60% overlap. In both cell types, ∼40% of estrogen-regulated genes associate with ERα binding sites; a similar percentage of estrogen-regulated genes are differentially expressed in two cell types. Based on pathway analysis, these differentially estrogen-regulated genes are linked to transforming growth factor β (TGF-β), NF-κB, and E2F pathways. Consistent with this, the two cell types responded differently to TGF-β treatment: parental cells, but not AKT-overexpressing cells, required estrogen to overcome growth inhibition. Combining the ERα DNA-binding pattern with gene expression data from primary tumors revealed specific effects of AKT on ERα binding and estrogen-regulated expression of genes that define prognostic subgroups and tamoxifen sensitivity of ERα-positive breast cancer. These results suggest a unique role of AKT in modulating estrogen signaling in ERα-positive breast cancers and highlights how extracellular signal activated kinases can change the landscape of transcription factor binding to the genome.


PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7526 ◽  
Author(s):  
Alfredo Mendoza-Vargas ◽  
Leticia Olvera ◽  
Maricela Olvera ◽  
Ricardo Grande ◽  
Leticia Vega-Alvarado ◽  
...  

Gene ◽  
2018 ◽  
Vol 642 ◽  
pp. 32-42 ◽  
Author(s):  
Miao Guo ◽  
Yi Li ◽  
Yuxia Chen ◽  
Xiaoli Guo ◽  
Zhenjie Yuan ◽  
...  

2018 ◽  
Vol 239 (3) ◽  
pp. 303-312 ◽  
Author(s):  
H H Farman ◽  
K L Gustafsson ◽  
P Henning ◽  
L Grahnemo ◽  
V Lionikaite ◽  
...  

The importance of estrogen receptor α (ERα) for the regulation of bone mass in males is well established. ERα mediates estrogenic effects both via nuclear and membrane-initiated ERα (mERα) signaling. The role of mERα signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERα signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ERα to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (µCT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mERα is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.


2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Kyle T. Helzer ◽  
Mary Szatkowski Ozers ◽  
Mark B. Meyer ◽  
Nancy A. Benkusky ◽  
Natalia Solodin ◽  
...  

ABSTRACT Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.


2020 ◽  
Vol 64 (4) ◽  
pp. R45-R56 ◽  
Author(s):  
Andrea Hanel ◽  
Henna-Riikka Malmberg ◽  
Carsten Carlberg

Molecular endocrinology of vitamin D is based on the activation of the transcription factor vitamin D receptor (VDR) by the vitamin D metabolite 1α,25-dihydroxyvitamin D3. This nuclear vitamin D-sensing process causes epigenome-wide effects, such as changes in chromatin accessibility as well as in the contact of VDR and its supporting pioneer factors with thousands of genomic binding sites, referred to as vitamin D response elements. VDR binding enhancer regions loop to transcription start sites of hundreds of vitamin D target genes resulting in changes of their expression. Thus, vitamin D signaling is based on epigenome- and transcriptome-wide shifts in VDR-expressing tissues. Monocytes are the most responsive cell type of the immune system and serve as a paradigm for uncovering the chromatin model of vitamin D signaling. In this review, an alternative approach for selecting vitamin D target genes is presented, which are most relevant for understanding the impact of vitamin D endocrinology on innate immunity. Different scenarios of the regulation of primary upregulated vitamin D target genes are presented, in which vitamin D-driven super-enhancers comprise a cluster of persistent (constant) and/or inducible (transient) VDR-binding sites. In conclusion, the spatio-temporal VDR binding in the context of chromatin is most critical for the regulation of vitamin D target genes.


1989 ◽  
Vol 9 (2) ◽  
pp. 837-843
Author(s):  
S L Hahn ◽  
M Hahn ◽  
W S Hayward

We mapped and sequenced three upstream exons of the chicken c-myb gene and the regions flanking the first coding exon. We found multiple potential binding sites for transcription factors in the 5'-noncoding region, a T-rich stretch of 78 base pairs (bp) (68% T) in the first intron, and four fairly long open reading frames in the antisense direction of the first coding exon and its flanking regions. Three major transcription start sites, contained within a single 11-bp region, were identified by S1 nuclease analysis and primer extension. A sequence comparison of the avian and murine c-myb genes revealed a highly conserved sequence of 124 bp in the 5'-noncoding region. Its location between the putative transcription factor binding sites and the major transcription start sites suggests that it may play an important regulatory role in c-myb expression.


Sign in / Sign up

Export Citation Format

Share Document