scholarly journals RIP140 Represses the “Brown-in-White” Adipocyte Program Including a Futile Cycle of Triacyclglycerol Breakdown and Synthesis

2014 ◽  
Vol 28 (3) ◽  
pp. 344-356 ◽  
Author(s):  
Evangelos Kiskinis ◽  
Lemonia Chatzeli ◽  
Edward Curry ◽  
Myrsini Kaforou ◽  
Andrea Frontini ◽  
...  

Abstract Receptor-interacting protein 140 (RIP140) is a corepressor of nuclear receptors that is highly expressed in adipose tissues. We investigated the role of RIP140 in conditionally immortal preadipocyte cell lines prepared from white or brown fat depots. In white adipocytes, a large set of brown fat-associated genes was up-regulated in the absence of RIP140. In contrast, a relatively minor role can be ascribed to RIP140 in the control of basal gene expression in differentiated brown adipocytes because significant changes were observed only in Ptgds and Fabp3. The minor role of RIP140 in brown adipocytes correlates with the similar histology and uncoupling protein 1 and CIDEA staining in knockout compared with wild-type brown adipose tissue (BAT). In contrast, RIP140 knockout sc white adipose tissue (WAT) shows increased numbers of multilocular adipocytes with elevated staining for uncoupling protein 1 and CIDEA. Furthermore in a white adipocyte cell line, the markers of BRITE adipocytes, Tbx1, CD137, Tmem26, Cited1, and Epsti1 were repressed in the presence of RIP140 as was Prdm16. Microarray analysis of wild-type and RIP140-knockout white fat revealed elevated expression of genes associated with cold-induced expression or high expression in BAT. A set of genes associated with a futile cycle of triacylglycerol breakdown and resynthesis and functional assays revealed that glycerol kinase and glycerol-3-phosphate dehydrogenase activity as well as [3H]glycerol incorporation were elevated in the absence of RIP140. Thus, RIP140 blocks the BRITE program in WAT, preventing the expression of brown fat genes and inhibiting a triacylglycerol futile cycle, with important implications for energy homeostasis.

2021 ◽  
Vol 1 (2) ◽  
pp. 42-46
Author(s):  
Afifa Radhina

Obesity is a common, serious, and detrimental condition. In 2014, more than 1.9 billion adults were overweight. Obesity is associated with many diseases and the increase in obesity has become a major health problem. Obesity is caused by an imbalance between energy intake and energy consumption. Adipose tissue is an endocrine organ that secretes many hormones and cytokines that can affect metabolism. There are two types of adipose tissue in the body with different functions, namely white adipose tissue and brown adipose tissue. White fat has a major function in storing energy and is increased in obesity, while brown fat produces heat (thermogenesis) and then increases energy consumption. Therefore, brown fat and the induction of brown fat-like properties in white fat, have been considered as targets in the fight against obesity. The complex process of cell differentiation leading to the appearance of active brown adipocytes has been identified. There are classic brown adipocytes and cream adipocytes. Beige adipocytes are brown adipocytes that appear on precursor cells of white adipose tissue due to stimuli. Brown adipocytes are equipped with mitochondria containing uncoupling protein 1 (UCP1), which, when activated, controls ATP synthesis and stimulates respiratory chain activity. The browning process of adipose tissue is controlled by factors such as exercise. Obesitas merupakan keadaan yang umum, serius, dan merugikan. Tahun 2014, lebih dari 1,9 milyar orang dewasa mengalami kelebihan berat badan. Obesitas berasosiasi dengan banyak penyakit dan peningkatan obesitas telah menjadi masalah kesehatan utama. Obesitas disebabkan oleh ketidakseimbangan antara energi yang masuk dan konsumsi energi. Jaringan adiposa dalam tubuh ada dua tipe yang fungsinya berbeda, yakni jaringan adiposa putih dan jaringan adiposa cokelat. Lemak putih berfungsi utama dalam menyimpan energi dan meningkat pada obesitas, sedangkan lemak cokelat menghasilkan panas (termogenesis) dan kemudian meningkatkan konsumsi energi. Oleh karena itu, lemak cokelat dan induksi sifat seperti lemak cokelat pada lemak putih, telah dipertimbangkan sebagai target dalam melawan obesitas. Tujuan penelitian ini adalah untuk mengetahui proses pencoklatan jaringan adiposa putih. Metode penelitian yang digunakan adalah metode penelusuran ilmiah. Hasil penelitian diperoleh bahwa adiposit krem merupakan adiposit cokelat yang muncul pada sel prekursor dari jaringan adiposa putih karena adanya stimuli. Adiposit krem sama seperti adiposit cokelat dilengkapi dengan mitokondria yang mengandung uncoupling protein 1 (UCP1), yang ketika teraktivasi akan mengendalikan sintesis ATP dan menstimulasi aktivitas rantai respirasi. Beberapa regulator seperti PPAR γ, PGC-1α, dan PRDM16 muncul sebagai pelaku utama dalam proses diferensiasi adiposit krem.


2020 ◽  
Author(s):  
Aaron R. Cox ◽  
Natasha Chernis ◽  
Kang Ho Kim ◽  
Peter M. Masschelin ◽  
Pradip K. Saha ◽  
...  

ABSTRACTObjectiveWhite adipose tissue (WAT) expansion regulates energy balance and overall metabolic homeostasis. WAT absence or loss occurring through lipodystrophy and lipoatrophy contributes to the development of dyslipidemia, hepatic steatosis, and insulin resistance. We previously demonstrated the sole small ubiquitin-like modifier (SUMO) E2-conjuguating enzyme Ubc9 represses human adipocyte differentiation. Germline and other tissue-specific deletions of Ubc9 frequently cause lethality in mice. As a result, the role of Ubc9 during WAT development remains unknown.MethodsTo determine how Ubc9 impacts body composition and energy balance, we generated adipocyte-specific Ubc9 knockout mice (Ubc9a-KO). CRISPR/Cas9 gene editing inserted loxP sites flanking exons 3 and 4 at the Ubc9 locus. Subsequent genetic crosses to AdipoQ-Cre transgenic mice allowed deletion of Ubc9 in white and brown adipocytes. We measured multiple metabolic endpoints that describe energy balance and carbohydrate metabolism in Ubc9a-KO and littermate controls during postnatal growth.ResultsTo our surprise, Ubc9a-KO mice developed hyperinsulinemia and hepatic steatosis. Global energy balance defects emerged from dysfunctional WAT marked by pronounced local inflammation, loss of serum adipokines, hepatomegaly, and near absence of major adipose tissue depots. We observed progressive lipoatrophy that commences in the early adolescent period.ConclusionsOur results demonstrate that Ubc9 expression in mature adipocytes is essential for maintaining WAT expansion. Deletion of Ubc9 in fat cells compromised and diminished adipocyte function that provoked WAT inflammation and ectopic lipid accumulation in the liver. Our findings reveal an indispensable role for Ubc9 during white adipocyte expansion and endocrine control of energy balance.


2011 ◽  
Vol 300 (1) ◽  
pp. R1-R8 ◽  
Author(s):  
Tobias Fromme ◽  
Martin Klingenspor

Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.


2014 ◽  
Vol 92 (7) ◽  
pp. 615-626 ◽  
Author(s):  
Yongguo Li ◽  
David Lasar ◽  
Tobias Fromme ◽  
Martin Klingenspor

Brown fat is a specialized heater organ in eutherian mammals. In contrast to the energy storage function of white adipocytes, brown adipocytes dissipate nutrient energy by uncoupling of mitochondrial oxidative phosphorylation, which depends on uncoupling protein 1 (UCP1). UCP1, as well as UCP2 and UCP3, belong to the family of mitochondrial carriers inserted into the inner mitochondrial membrane for metabolite trafficking between the matrix and the intermembrane space. UCP1 transports protons into the mitochondrial matrix when activated by a rise in free fatty acid levels in the cell. This UCP1-dependant proton leak drives high oxygen consumption rates in the absence of ATP synthesis and dissipates proton motive force as heat. The enormous heating capacity of brown fat is supported by dense vascularization, high rates of tissue perfusion, and high mitochondrial density in brown adipocytes. It has been known for more than 50 years that nonshivering thermogenesis in brown fat serves to maintain body temperature of neonates and small mammals in cold environments, and is used by hibernators for arousal from torpor. It has been speculated that the development of brown fat as a new source for nonshivering thermogenesis provided mammals with a unique advantage for survival in the cold. Indeed brown fat and UCP1 is found in ancient groups of mammals, like the afrotherians and marsupials. In the latter, however, the thermogenic function of UCP1 and brown fat has not been demonstrated as of yet. Notably, orthologs of all three mammalian UCP genes are also present in the genomes of bony fishes and in amphibians. Molecular phylogeny reveals a striking increase in the substitution rate of UCP1 between marsupial and eutherian lineages. At present, it seems that UCP1 only gained thermogenic function in brown adipocytes of eutherian mammals, whereas the function of UCP1 and that of the other UCPs in ectotherms remains to be identified. Evolution of thermogenic function required expression of UCP1 in a brown-adipocyte-like cell equipped with high mitochondrial density embedded in a well-vascularized tissue. Brown-adipocyte-like cells in white adipose tissue, called “brite” (brown-in-white) or “beige” adipocytes, emerge during adipogenesis and in response to cold exposure in anatomically distinct adipose tissue depots of juvenile and adult rodents. These brite adipocytes may resemble the archetypical brown adipocyte in vertebrate evolution. It is therefore of interest to elucidate the molecular mechanisms of brite adipocyte differentiation, study the bioenergetic properties of these cells, and search for the presence of related brown-adipocyte-like cells in nonmammalian vertebrates.


2015 ◽  
Vol 29 (9) ◽  
pp. 1320-1333 ◽  
Author(s):  
Sean M. Hartig ◽  
David A. Bader ◽  
Kathleen V. Abadie ◽  
Massoud Motamed ◽  
Mark P. Hamilton ◽  
...  

Abstract Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.


2014 ◽  
Vol 307 (9) ◽  
pp. E793-E799 ◽  
Author(s):  
G. Andres Contreras ◽  
Yun-Hee Lee ◽  
Emilio P. Mottillo ◽  
James G. Granneman

Brown adipocytes (BA) generate heat in response to sympathetic activation and are the main site of nonshivering thermogenesis in mammals. Although most BA are located in classic brown adipose tissue depots, BA are also abundant in the inguinal white adipose tissue (iWAT) before weaning. The number of BA is correlated with the density of sympathetic innervation in iWAT; however, the role of continuous sympathetic tone in the establishment and maintenance of BA in WAT has not been investigated. BA marker expression in iWAT was abundant in weaning mice but was greatly reduced by 8 wk of age. Nonetheless, BA phenotype could be rapidly reinstated by acute β3-adrenergic stimulation with CL-316,243 (CL). Genetic tagging of adipocytes with adiponectin-CreERT2 demonstrated that CL reinstates uncoupling protein 1 (UCP1) expression in adipocytes that were present before weaning. Chronic surgical denervation dramatically reduced the ability of CL to induce the expression of UCP1 and other BA markers in the tissue as a whole, and this loss of responsiveness was prevented by concurrent treatment with CL. These results indicate that ongoing sympathetic activity is critical to preserve the ability of iWAT fat cells to express a BA phenotype upon adrenergic stimulation.


2014 ◽  
Vol 306 (4) ◽  
pp. E363-E372 ◽  
Author(s):  
Ruidan Xue ◽  
Yun Wan ◽  
Shuo Zhang ◽  
Qiongyue Zhang ◽  
Hongying Ye ◽  
...  

There are two different types of fat present in mammals: white adipose tissue, the primary site of energy storage, and brown adipose tissue, which is specializes in energy expenditure. Factors that specify the developmental fate and function of brown fat are poorly understood. Bone morphogenic proteins (BMPs) play an important role in adipogenesis. While BMP4 is capable of triggering commitment of stem cells to the white adipocyte lineage, BMP7 triggers commitment of progenitor cells to a brown adipocyte lineage and activates brown adipogenesis. To investigate the differential effects of BMPs on the development of adipocytes, C3H10T1/2 pluripotent cells were pretreated with BMP4 and BMP7, followed by different adipogenic induction cocktails. Both BMP4 and BMP7 unexpectedly activated a full program of brown adipogenesis, including induction of the brown fat-defining marker uncoupling protein-1 (UCP1), increasing the expression of early regulators of brown fat fate PRDM16 (PR domain-containing 16) and induction of mitochondrial biogenesis and function. Implantation of BMP4-pretreated C3H10T1/2 cells into nude mice resulted in the development of adipose tissue depots containing UCP1-positive brown adipocytes. Interestingly, BMP4 could also induce brown fat-like adipocytes in both white and brown preadipocytes, thereby decreasing the classical brown adipocyte marker Zic1 and increasing the recently identified beige adipocyte marker TMEM26. The data indicate an important role for BMP4 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro and offers a potentially new therapeutic approach for the treatment of obesity.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1195-1201 ◽  
Author(s):  
Masami Murakami ◽  
Yuji Kamiya ◽  
Tadashi Morimura ◽  
Osamu Araki ◽  
Makoto Imamura ◽  
...  

2011 ◽  
Vol 300 (6) ◽  
pp. E1146-E1157 ◽  
Author(s):  
Christelle Veyrat-Durebex ◽  
Anne-Laure Poher ◽  
Aurélie Caillon ◽  
Xavier Montet ◽  
Françoise Rohner-Jeanrenaud

Recent studies describe the Lou/C rat as a model of resistance to age- and diet-induced obesity and suggest a preferential channeling of nutrients toward utilization rather than storage under standard feeding conditions. The purpose of the present study was to evaluate lipid metabolism of Lou/C and Wistar rats under a high-fat (HF) diet. Four-month-old male Lou/C and Wistar animals were submitted to a 40% HF diet for 5–9 wk. Evolution of food intake, body weight, and body composition, hormonal parameters, and expression of key transcription factors and enzymes involved in lipid metabolism were determined. Wistar rats developed obesity after 5 wk of HF diet, as previously described. Among the various parameters measured, accumulation of intraperitoneal fat was particularly evident in HF-fed Wistar rats. In these animals, thermogenesis was, however, stimulated as a likely compensatory mechanism against the development of obesity. On the contrary, Lou/C animals failed to develop obesity under such a diet, and intraperitoneal fat, not including epididymal and retroperitoneal fat depots, was virtually absent. Enzyme measurements confirmed lipid utilization rather than storage, which was accompanied by the striking emergence of uncoupling protein-1, characteristic of brown adipocytes, in white adipose tissue, particularly in the subcutaneous depot.


2007 ◽  
Vol 293 (3) ◽  
pp. R1086-R1093 ◽  
Author(s):  
Augustine Ocloo ◽  
Irina G. Shabalina ◽  
Jan Nedergaard ◽  
Martin D. Brand

The recruitment process induced by acclimation of mammals to cold includes a marked alteration in the acyl composition of the phospholipids of mitochondria from brown adipose tissue: increases in 18:0, 18:2( n–6), and 20:4( n–6) and decreases in 16:0, 16:1, 18:1, and 22:6( n–3). A basic question is whether these alterations are caused by changes in the concentration of uncoupling protein-1 (UCP1) or the thermogenesis it mediates—implying that they are secondary effects—or whether they are an integrated, independent part of the recruitment process. This question was addressed here using wild-type and UCP1-ablated C57BL/6 mice acclimated to 24°C or 4°C. In wild-type mice, the phospholipid fatty acyl composition of mitochondria from brown adipose tissue showed the changes in response to cold that were expected from observations in other species and strains. The changes were specific, as different changes occurred in skeletal muscle mitochondria. In UCP1-ablated mice, cold acclimation induced acyl alterations in brown adipose tissue that were qualitatively identical and quantitatively similar to those in wild-type mice. Therefore, neither the increased content of UCP1 nor mitochondrial uncoupling altered the effect of cold on acyl composition. Cold acclimation in wild-type mice had little effect on phospholipid acyl composition in muscle mitochondria, but cold-acclimation in UCP1-ablated mice caused significant alterations, probably due to sustained shivering. Thus, the alterations in brown adipose tissue phospholipid acyl composition are revealed to be an independent part of the recruitment process, and their functional significance for thermogenesis should be elucidated.


Sign in / Sign up

Export Citation Format

Share Document