scholarly journals Minireview: Directed Differentiation and Encapsulation of Islet β-Cells—Recent Advances and Future Considerations

2015 ◽  
Vol 29 (10) ◽  
pp. 1388-1399 ◽  
Author(s):  
Hubert M. Tse ◽  
Veronika Kozlovskaya ◽  
Eugenia Kharlampieva ◽  
Chad S. Hunter

Abstract Diabetes mellitus has rapidly become a 21st century epidemic with the promise to create vast economic and health burdens, if left unchecked. The 2 major forms of diabetes arise from unique causes, with outcomes being an absolute (type 1) or relative (type 2) loss of functional pancreatic islet β-cell mass. Currently, patients rely on exogenous insulin and/or other pharmacologies that restore glucose homeostasis. Although these therapies have prolonged countless lives over the decades, the striking increases in both type 1 and type 2 diabetic diagnoses worldwide suggest a need for improved treatments. To this end, islet biologists are developing cell-based therapies by which a patient's lost insulin-producing β-cell mass is replenished. Pancreatic or islet transplantation from cadaveric donors into diabetic patients has been successful, yet the functional islet demand far surpasses supply. Thus, the field has been striving toward transplantation of renewable in vitro-derived β-cells that can restore euglycemia. Challenges have been numerous, but progress over the past decade has generated much excitement. In this review we will summarize recent findings that have placed us closer than ever to β-cell replacement therapies. With the promise of cell-based diabetes therapies on the horizon, we will also provide an overview of cellular encapsulation technologies that will deliver critical protection of newly implanted cells.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Amin Ardestani ◽  
Sijia Li ◽  
Karthika Annamalai ◽  
Blaz Lupse ◽  
Shirin Geravandi ◽  
...  

Abstract The loss of functional insulin-producing β-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic β-cell death and dysfunction; its deficiency restores functional β-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a β-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves β-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves β-cell function, survival and β-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes.


2009 ◽  
Vol 18 (5-6) ◽  
pp. 491-496 ◽  
Author(s):  
Naoya Kobayashi ◽  
Takeshi Yuasa ◽  
Teru Okitsu

In diabetes, a loss of pancreatic β-cells causes insulin dependency. When insulin dependency is caused by type 1 diabetes or pancreatic diabetes, for example, pancreatic β-cells need to be regenerated for definitive treatment. The methods for generating pancreatic β-cells include a method of creating pancreatic β-cells in vitro and implanting them into the body and a method of regenerating pancreatic β-cells in the body via gene introduction or the administration of differential proliferation factors to the body. Moreover, the number of pancreatic β-cells is also low in type 2 diabetes, caused by the compounding factors of insulin secretory failure and insulin resistance; therefore, if pancreatic β-cells can be regenerated in a living body, then a further amelioration of the pathology can be expected. The development of pancreatic β-cell-targeting regenerative medicine can lead to the next generation of diabetes treatment.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Jeffrey R. Millman ◽  
Chunhui Xie ◽  
Alana Van Dervort ◽  
Mads Gürtler ◽  
Felicia W. Pagliuca ◽  
...  

Abstract We recently reported the scalable in vitro production of functional stem cell-derived β-cells (SC-β cells). Here we extend this approach to generate the first SC-β cells from type 1 diabetic patients (T1D). β-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-β cells express β-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of β-cell stress. Using these assays, we find no major differences in T1D SC-β cells compared with SC-β cells derived from non-diabetic patients. These results show that T1D SC-β cells could potentially be used for the treatment of diabetes, drug screening and the study of β-cell biology.


2019 ◽  
Vol 20 (21) ◽  
pp. 5417 ◽  
Author(s):  
Salinno ◽  
Cota ◽  
Bastidas-Ponce ◽  
Tarquis-Medina ◽  
Lickert ◽  
...  

The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing β-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the β-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate β-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of β-cells and define their functional identity. Furthermore, we discuss different routes by which β-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those β-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature β-cells from stem cells for cell-replacement therapy for diabetes treatment.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2580-2588 ◽  
Author(s):  
Noèlia Téllez ◽  
Géraldine Joanny ◽  
Jéssica Escoriza ◽  
Marina Vilaseca ◽  
Eduard Montanya

β-Cell mass reduction is a central aspect in the development of type 1 and type 2 diabetes, and substitution or regeneration of the lost β-cells is a potentially curative treatment of diabetes. To study the effects of gastrin on β-cell mass in rats with 95% pancreatectomy (95%-Px), a model of pancreatic regeneration, rats underwent 95% Px or sham Px and were treated with [15 leu] gastrin-17 (Px+G and S+G) or vehicle (Px+V and S+V) for 15 d. In 95% Px rats, gastrin treatment reduced hyperglycemia (280 ± 52 mg vs. 436 ± 51 mg/dl, P < 0.05), and increased β-cell mass (1.15 ± 0.15 mg)) compared with vehicle-treated rats (0.67 ± 0.15 mg, P < 0.05). Gastrin treatment induced β-cell regeneration by enhancing β-cell neogenesis (increased number of extraislet β-cells in Px+G: 0.42 ± 0.05 cells/mm2vs. Px+V: 0.27 ± 0.07 cells/mm2, P < 0.05, and pancreatic and duodenal homeobox 1 expression in ductal cells of Px+G: 1.21 ± 0.38% vs. Px+V: 0.23 ± 0.10%, P < 0.05) and replication (Px+G: 1.65 ± 0.26% vs. S+V: 0.64 ± 0.14%; P < 0.05). In addition, reduced β-cell apoptosis contributed to the increased β-cell mass in gastrin-treated rats (Px+G: 0.07 ± 0.02%, Px+V: 0.23 ± 0.05%; P < 0.05). Gastrin action on β-cell regeneration and survival increased β-cell mass and improved glucose tolerance in 95% Px rats, supporting a potential role of gastrin in the treatment of diabetes.


2007 ◽  
Vol 40 (2) ◽  
pp. 37-45 ◽  
Author(s):  
Thierry Brun ◽  
Benoit R Gauthier

Blood glucose homeostasis is achieved by the regulation of insulin and glucagon secretion from the pancreatic islet β- and α-cells. Diabetes mellitus, which comprises a heterogeneous group of hyperglycaemic disorders, results mainly from inadequate mass and function of islet β-cells. Autoimmune destruction of β-cells causes type 1 diabetes, while type 2 is characterized by impaired insulin secretion and is often associated with diminished insulin action on its target tissues. Interestingly, similar to type 1 diabetes, a gradual loss of β-cell mass is observed in type 2 diabetes often requiring insulin therapy. Understanding the molecular mechanism that governs β-cell mass plasticity may provide a means to develop strategies to countera,ct β-cell death while increasing replication. Of particular interest is the islet-specific transcription factor paired box4 (Pax4) that was previously shown to be indispensable for the establishment of the β-cell lineage during development. However, recent accumulating evidence now suggest that Pax4 is also crucial for mature β-cell expansion and survival in response to physiological cues and that mutations or polymorphisms are associated with both type 1 and type 2 diabetes. In contrast, aberrant expression of Pax4 confers protection against apoptosis to insulinomas, whereas it promotes cell growth in lymphocytes. This review summarizes promising new published results supporting the important function of Pax4 in mature islet β-cell physiology and its contribution to pathophysiology when deregulated.


2003 ◽  
Vol 88 (5) ◽  
pp. 2300-2308 ◽  
Author(s):  
Kun Ho Yoon ◽  
Seung Hyun Ko ◽  
Jae Hyoung Cho ◽  
Jung Min Lee ◽  
Yu Bae Ahn ◽  
...  

In the presence of obesity, β-cell mass needs to be increased to compensate for the accompanying demands and maintain euglycemia. However, in Korea, the majority of type 2 diabetic patients are nonobese. We determined the absolute masses, relative volumes, and ratio of α- and β-cell in the pancreas and islets in normal and diabetic Korean subjects to correlate these findings with the clinical characteristics. Whole pancreases procured from organ donors were divided into 24 parts (control 1, n = 9). Tissue was also obtained by surgical resection after 35 partial pancreatectomies: in 25 diabetic patients, 10 age- and body mass index (BMI)-matched patients of benign or malignant pancreatic tumor without diabetes mellitus (DM) (control 2). Morphometric quantifications were performed. In control 1, the relative volume of β-cells was 2.1 ± 0.9%, and the total β-cell mass was 1.3 ± 0.3 g. The relative volume of β-cells was found to be variable (control 1, 2.1 ± 0.9%; control 2, 1.9 ± 0.7%; DM, 1.4 ± 1.0%; P < 0.05 DM vs. control 1 and 2) and showed good correlation with BMI (control 1, r2 = 0.64; DM, r2 = 0.55; all subjects, r2 = 0.38; P < 0.05). Notably, in type 2 diabetic patients, the ratio of α-cell area to β-cell area in the islet was higher than in control 1 and 2 (0.81 ± 0.4 vs. 0.29 ± 0.2, 0.20 ± 0.1, P < 0.05). Additionally, significant α-cell expansion and a decreased β-cell fraction were predominantly observed in larger islets (islet area, >6415 μm2; P < 0.05) in control 1 and diabetic patients. The relative volume of β-cell was found to be correlated with BMI in diabetic patients and normal organ donors. Moreover, decreased β-cell but increased α-cell proportion in the islets suggests for a selective β-cell loss in the pathogenesis of Korean type 2 diabetes.


2008 ◽  
Vol 36 (3) ◽  
pp. 267-271 ◽  
Author(s):  
Guy A. Rutter ◽  
F. Susan Wong

Defective insulin secretion is a hallmark of all forms of diabetes. Whereas Type 1 diabetes has long been known to result from the immune-mediated destruction of β-cells, Type 2 diabetes appears to involve both loss of β-cell mass and glucose sensitivity in the face of extrapancreatic insulin resistance. We summarize here the proceedings of a Biochemical Society Focused Meeting, held at the St Thomas campus of King's College London in December 2007, which highlighted recent research advances targeting the β-cell.


2013 ◽  
Vol 305 (1) ◽  
pp. E149-E159 ◽  
Author(s):  
Rachel E. Stamateris ◽  
Rohit B. Sharma ◽  
Douglas A. Hollern ◽  
Laura C. Alonso

Type 2 diabetes (T2D) is caused by relative insulin deficiency, due in part to reduced β-cell mass ( 11 , 62 ). Therapies aimed at expanding β-cell mass may be useful to treat T2D ( 14 ). Although feeding rodents a high-fat diet (HFD) for an extended period (3–6 mo) increases β-cell mass by inducing β-cell proliferation ( 16 , 20 , 53 , 54 ), evidence suggests that adult human β-cells may not meaningfully proliferate in response to obesity. The timing and identity of the earliest initiators of the rodent compensatory growth response, possible therapeutic targets to drive proliferation in refractory human β-cells, are not known. To develop a model to identify early drivers of β-cell proliferation, we studied mice during the first week of HFD exposure, determining the onset of proliferation in the context of diet-related physiological changes. Within the first week of HFD, mice consumed more kilocalories, gained weight and fat mass, and developed hyperglycemia, hyperinsulinemia, and glucose intolerance due to impaired insulin secretion. The β-cell proliferative response also began within the first week of HFD feeding. Intriguingly, β-cell proliferation increased before insulin resistance was detected. Cyclin D2 protein expression was increased in islets by day 7, suggesting it may be an early effector driving compensatory β-cell proliferation in mice. This study defines the time frame and physiology to identify novel upstream regulatory signals driving mouse β-cell mass expansion, in order to explore their efficacy, or reasons for inefficacy, in initiating human β-cell proliferation.


Endocrinology ◽  
2017 ◽  
Vol 158 (11) ◽  
pp. 3900-3913 ◽  
Author(s):  
Xiao-Ting Huang ◽  
Shao-Jie Yue ◽  
Chen Li ◽  
Yan-Hong Huang ◽  
Qing-Mei Cheng ◽  
...  

Abstract Type 2 diabetes, which features β-cell failure, is caused by the decrease of β-cell mass and insulin secretory function. Current treatments fail to halt the decrease of functional β-cell mass. Strategies to prevent β-cell apoptosis and dysfunction are highly desirable. Recently, our group and others have reported that blockade of N-methyl-d-aspartate receptors (NMDARs) in the islets has been proposed to prevent the progress of type 2 diabetes through improving β-cell function. It suggests that a sustained activation of the NMDARs may exhibit deleterious effect on β-cells. However, the exact functional impact and mechanism of the sustained NMDAR stimulation on islet β-cells remains unclear. Here, we identify a sustained activation of pancreatic NMDARs as a novel factor of apoptotic β-cell death and function. The sustained treatment with NMDA results in an increase of intracellular [Ca2+] and reactive oxygen species, subsequently induces mitochondrial membrane potential depolarization and a decrease of oxidative phosphorylation expression, and then impairs the mitochondrial function of β-cells. NMDA specifically induces the mitochondrial-dependent pathway of apoptosis in β-cells through upregulation of the proapoptotic Bim and Bax, and downregulation of antiapoptotic Bcl-2. Furthermore, a sustained stimulation of NMDARs impairs β-cell insulin secretion through decrease of pancreatic duodenal homeobox-1 (Pdx-1) and adenosine triphosphate synthesis. The activation of nuclear factor–κB partly contributes to the reduction of Pdx-1 expression induced by overstimulation of NMDARs. In conclusion, we show that the sustained stimulation of NMDARs is a novel mediator of apoptotic signaling and β-cell dysfunction, providing a mechanistic insight into the pathological role of NMDARs activation in diabetes.


Sign in / Sign up

Export Citation Format

Share Document