scholarly journals Regenerative Medicine for Diabetes Mellitus

2009 ◽  
Vol 18 (5-6) ◽  
pp. 491-496 ◽  
Author(s):  
Naoya Kobayashi ◽  
Takeshi Yuasa ◽  
Teru Okitsu

In diabetes, a loss of pancreatic β-cells causes insulin dependency. When insulin dependency is caused by type 1 diabetes or pancreatic diabetes, for example, pancreatic β-cells need to be regenerated for definitive treatment. The methods for generating pancreatic β-cells include a method of creating pancreatic β-cells in vitro and implanting them into the body and a method of regenerating pancreatic β-cells in the body via gene introduction or the administration of differential proliferation factors to the body. Moreover, the number of pancreatic β-cells is also low in type 2 diabetes, caused by the compounding factors of insulin secretory failure and insulin resistance; therefore, if pancreatic β-cells can be regenerated in a living body, then a further amelioration of the pathology can be expected. The development of pancreatic β-cell-targeting regenerative medicine can lead to the next generation of diabetes treatment.

2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Amin Ardestani ◽  
Sijia Li ◽  
Karthika Annamalai ◽  
Blaz Lupse ◽  
Shirin Geravandi ◽  
...  

Abstract The loss of functional insulin-producing β-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic β-cell death and dysfunction; its deficiency restores functional β-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a β-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves β-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves β-cell function, survival and β-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes.


2015 ◽  
Vol 29 (10) ◽  
pp. 1388-1399 ◽  
Author(s):  
Hubert M. Tse ◽  
Veronika Kozlovskaya ◽  
Eugenia Kharlampieva ◽  
Chad S. Hunter

Abstract Diabetes mellitus has rapidly become a 21st century epidemic with the promise to create vast economic and health burdens, if left unchecked. The 2 major forms of diabetes arise from unique causes, with outcomes being an absolute (type 1) or relative (type 2) loss of functional pancreatic islet β-cell mass. Currently, patients rely on exogenous insulin and/or other pharmacologies that restore glucose homeostasis. Although these therapies have prolonged countless lives over the decades, the striking increases in both type 1 and type 2 diabetic diagnoses worldwide suggest a need for improved treatments. To this end, islet biologists are developing cell-based therapies by which a patient's lost insulin-producing β-cell mass is replenished. Pancreatic or islet transplantation from cadaveric donors into diabetic patients has been successful, yet the functional islet demand far surpasses supply. Thus, the field has been striving toward transplantation of renewable in vitro-derived β-cells that can restore euglycemia. Challenges have been numerous, but progress over the past decade has generated much excitement. In this review we will summarize recent findings that have placed us closer than ever to β-cell replacement therapies. With the promise of cell-based diabetes therapies on the horizon, we will also provide an overview of cellular encapsulation technologies that will deliver critical protection of newly implanted cells.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Yaser Albadr ◽  
Andrew Crowe ◽  
Rima Caccetta

The prevalence of type 2 diabetes mellitus is rising globally and this disease is proposed to be the next pandemic after COVID-19. Although the cause of type 2 diabetes mellitus is unknown, it is believed to involve a complex array of genetic defects that affect metabolic pathways which eventually lead to hyperglycaemia. This hyperglycaemia arises from an inability of the insulin-sensitive cells to sufficiently respond to the secreted insulin, which eventually results in the inadequate secretion of insulin from pancreatic β-cells. Several treatments, utilising a variety of mechanisms, are available for type 2 diabetes mellitus. However, more medications are needed to assist with the optimal management of the different stages of the disease in patients of varying ages with the diverse combinations of other medications co-administered. Throughout modern history, some lead constituents from ancient medicinal plants have been investigated extensively and helped in developing synthetic antidiabetic drugs, such as metformin. Teucrium polium L. (Tp) is a herb that has a folk reputation for its antidiabetic potential. Previous studies indicate that Tp extracts significantly decrease blood glucose levels r and induce insulin secretion from pancreatic β-cells in vitro. Nonetheless, the constituent/s responsible for this action have not yet been elucidated. The effects appear to be, at least in part, attributable to the presence of selected flavonoids (apigenin, quercetin, and rutin). This review aims to examine the reported glucose-lowering effect of the herb, with a keen focus on insulin secretion, specifically related to type 2 diabetes mellitus. An analysis of the contribution of the key constituent flavonoids of Tp extracts will also be discussed.


2018 ◽  
Vol 499 (4) ◽  
pp. 960-966 ◽  
Author(s):  
Jihyun Um ◽  
Nunggum Jung ◽  
Dongjin Kim ◽  
Sanghyuk Choi ◽  
Sang-Ho Lee ◽  
...  

2020 ◽  
Vol 25 (2) ◽  
pp. 23
Author(s):  
Diana Gamboa ◽  
Carlos E. Vázquez ◽  
Paul J. Campos

Type-1 diabetes mellitus (T1DM) is an autoimmune disease that has an impact on mortality due to the destruction of insulin-producing pancreatic β -cells in the islets of Langerhans. Over the past few years, the interest in analyzing this type of disease, either in a biological or mathematical sense, has relied on the search for a treatment that guarantees full control of glucose levels. Mathematical models inspired by natural phenomena, are proposed under the prey–predator scheme. T1DM fits in this scheme due to the complicated relationship between pancreatic β -cell population growth and leukocyte population growth via the immune response. In this scenario, β -cells represent the prey, and leukocytes the predator. This paper studies the global dynamics of T1DM reported by Magombedze et al. in 2010. This model describes the interaction of resting macrophages, activated macrophages, antigen cells, autolytic T-cells, and β -cells. Therefore, the localization of compact invariant sets is applied to provide a bounded positive invariant domain in which one can ensure that once the dynamics of the T1DM enter into this domain, they will remain bounded with a maximum and minimum value. Furthermore, we analyzed this model in a closed-loop scenario based on nonlinear control theory, and proposed bases for possible control inputs, complementing the model with them. These entries are based on the existing relationship between cell–cell interaction and the role that they play in the unchaining of a diabetic condition. The closed-loop analysis aims to give a deeper understanding of the impact of autolytic T-cells and the nature of the β -cell population interaction with the innate immune system response. This analysis strengthens the proposal, providing a system free of this illness—that is, a condition wherein the pancreatic β -cell population holds and there are no antigen cells labeled by the activated macrophages.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jaeyong Cho ◽  
Yukio Horikawa ◽  
Mayumi Enya ◽  
Jun Takeda ◽  
Yoichi Imai ◽  
...  

Abstract We sought to determine a mechanism by which L-arginine increases glucose-stimulated insulin secretion (GSIS) in β-cells by finding a protein with affinity to L-arginine using arginine-immobilized magnetic nanobeads technology. Glucokinase (GCK), the key regulator of GSIS and a disease-causing gene of maturity-onset diabetes of the young type 2 (MODY2), was found to bind L-arginine. L-Arginine stimulated production of glucose-6-phosphate (G6P) and induced insulin secretion. We analyzed glucokinase mutants and identified three glutamate residues that mediate binding to L-arginine. One MODY2 patient with GCKE442* demonstrated lower C-peptide-to-glucose ratio after arginine administration. In β-cell line, GCKE442* reduced L-arginine-induced insulin secretion compared with GCKWT. In addition, we elucidated that the binding of arginine protects glucokinase from degradation by E3 ubiquitin ligase cereblon mediated ubiquitination. We conclude that L-arginine induces insulin secretion by increasing G6P production by glucokinase through direct stimulation and by prevention of degradation.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4381
Author(s):  
Zakiyatul Faizah ◽  
Bella Amanda ◽  
Faisal Yusuf Ashari ◽  
Efta Triastuti ◽  
Rebecca Oxtoby ◽  
...  

Diabetes mellitus (DM) is one of the major causes of death in the world. There are two types of DM—type 1 DM and type 2 DM. Type 1 DM can only be treated by insulin injection whereas type 2 DM is commonly treated using anti-hyperglycemic agents. Despite its effectiveness in controlling blood glucose level, this therapeutic approach is not able to reduce the decline in the number of functional pancreatic β cells. MST1 is a strong pro-apoptotic kinase that is expressed in pancreatic β cells. It induces β cell death and impairs insulin secretion. Recently, a potent and specific inhibitor for MST1, called XMU-MP-1, was identified and characterized. We hypothesized that treatment with XMU-MP-1 would produce beneficial effects by improving the survival and function of the pancreatic β cells. We used INS-1 cells and STZ-induced diabetic mice as in vitro and in vivo models to test the effect of XMU-MP-1 treatment. We found that XMU-MP-1 inhibited MST1/2 activity in INS-1 cells. Moreover, treatment with XMU-MP-1 produced a beneficial effect in improving glucose tolerance in the STZ-induced diabetic mouse model. Histological analysis indicated that XMU-MP-1 increased the number of pancreatic β cells and enhanced Langerhans islet area in the severe diabetic mice. Overall, this study showed that MST1 could become a promising therapeutic target for diabetes mellitus.


2010 ◽  
Vol 120 (5) ◽  
pp. 179-181 ◽  
Author(s):  
Henrik Ortsäter

Saturated fatty acids are toxic to pancreatic β-cells. By inducing apoptosis, they contribute to a decrease in β-cell mass, a hallmark of Type 2 diabetes. In the present issue of Clinical Science, Keane and co-workers show that the polyunsaturated fatty acid arachidonic acid protects the β-cell against the toxic effects of palmitate. As Type 2 diabetes is characterized by subclinical inflammation, and arachidonic acid and metabolites thereof are produced during states of inflammation, it is possible that pancreatic β-cells use arachidonic acid as a compound for self-protection.


Sign in / Sign up

Export Citation Format

Share Document