scholarly journals Identification and Characterization of Alternatively Spliced Transcript Isoforms of IRX4 in Prostate Cancer

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 615
Author(s):  
Achala Fernando ◽  
Chamikara Liyanage ◽  
Afshin Moradi ◽  
Panchadsaram Janaththani ◽  
Jyotsna Batra

Alternative splicing (AS) is tightly regulated to maintain genomic stability in humans. However, tumor growth, metastasis and therapy resistance benefit from aberrant RNA splicing. Iroquois-class homeodomain protein 4 (IRX4) is a TALE homeobox transcription factor which has been implicated in prostate cancer (PCa) as a tumor suppressor through genome-wide association studies (GWAS) and functional follow-up studies. In the current study, we characterized 12 IRX4 transcripts in PCa cell lines, including seven novel transcripts by RT-PCR and sequencing. They demonstrate unique expression profiles between androgen-responsive and nonresponsive cell lines. These transcripts were significantly overexpressed in PCa cell lines and the cancer genome atlas program (TCGA) PCa clinical specimens, suggesting their probable involvement in PCa progression. Moreover, a PCa risk-associated SNP rs12653946 genotype GG was corelated with lower IRX4 transcript levels. Using mass spectrometry analysis, we identified two IRX4 protein isoforms (54.4 kDa, 57 kDa) comprising all the functional domains and two novel isoforms (40 kDa, 8.7 kDa) lacking functional domains. These IRX4 isoforms might induce distinct functional programming that could contribute to PCa hallmarks, thus providing novel insights into diagnostic, prognostic and therapeutic significance in PCa management.

2018 ◽  
Vol 72 ◽  
pp. 991-996
Author(s):  
Marzena Anna Lewandowska ◽  
Łukasz Żołna ◽  
Krzysztof Roszkowski ◽  
Janusz Kowalewski

Fifteen years after the publication of the full sequence of the human genome which revolutionized medicine and biotechnology, profound elucidation of the molecular mechanisms of genetic disorders remains a challenge. National and international institutions conduct a number of research projects in genomics. Some of them are focused on the characterization of functional elements of the genome (e.g., the Genome Browser database by the ENCODE consortium), some gather information on polymorphisms (HapMap, The 1000 Genomes Project) and mutations (The Human Gene Mutation Database), while other are specifically dedicated to the genomic characterization of cancer (The Cancer Genome Atlas, The Pediatric Cancer Genome Project). Even though the projects are conducted independently, juxtapositions of the constantly updated project data may be performed, leading to interesting results. The genome-wide association studies (GWAS) allowed the identification of millions of SNPs and short insertions/deletions, as well as thousands of structural variants of polymorphic gene products. Further data-mining studies allowed the distinction between synonymous and nonsynonymous SNPs, which became the basis for the epidemiological studies of various types of genetic disorders. The results of the sequencing of entire genomes and transcriptomes may be useful in the identification of novel prognostic and predictive markers. High-throughput technologies are emerging methods in molecular diagnostics, furthermore the correlation of DNA methylation patterns and gene expression profiles may also provide useful results in cancer diagnostics.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tarun Karthik Kumar Mamidi ◽  
Jiande Wu ◽  
Chindo Hicks

Background. Majority of prostate cancer (PCa) deaths are attributed to localized high-grade aggressive tumours which progress rapidly to metastatic disease. A critical unmet need in clinical management of PCa is discovery and characterization of the molecular drivers of aggressive tumours. The development and progression of aggressive PCa involve genetic and epigenetic alterations occurring in the germline, somatic (tumour), and epigenomes. To date, interactions between genes containing germline, somatic, and epigenetic mutations in aggressive PCa have not been characterized. The objective of this investigation was to elucidate the genomic-epigenomic interaction landscape in aggressive PCa to identify potential drivers aggressive PCa and the pathways they control. We hypothesized that aggressive PCa originates from a complex interplay between genomic (both germline and somatic mutations) and epigenomic alterations. We further hypothesized that these complex arrays of interacting genomic and epigenomic factors affect gene expression, molecular networks, and signaling pathways which in turn drive aggressive PCa. Methods. We addressed these hypotheses by performing integrative data analysis combining information on germline mutations from genome-wide association studies with somatic and epigenetic mutations from The Cancer Genome Atlas using gene expression as the intermediate phenotype. Results. The investigation revealed signatures of genes containing germline, somatic, and epigenetic mutations associated with aggressive PCa. Aberrant DNA methylation had effect on gene expression. In addition, the investigation revealed molecular networks and signalling pathways enriched for germline, somatic, and epigenetic mutations including the STAT3, PTEN, PCa, ATM, AR, and P53 signalling pathways implicated in aggressive PCa. Conclusions. The study demonstrated that integrative analysis combining diverse omics data is a powerful approach for the discovery of potential clinically actionable biomarkers, therapeutic targets, and elucidation of oncogenic interactions between genomic and epigenomic alterations in aggressive PCa.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tarun Karthik Kumar Mamidi ◽  
Jiande Wu ◽  
Chindo Hicks

Prostate cancer (PCa) is the most common diagnosed malignancy and the second leading cause of cancer-related deaths among men in the USA. Advances in high-throughput genotyping and next generation sequencing technologies have enabled discovery of germline genetic susceptibility variants and somatic mutations acquired during tumor formation. Emerging evidence indicates that germline variations may interact with somatic events in carcinogenesis. However, the possible oncogenic interactions and cooperation between germline and somatic variation and their role in aggressive PCa remain largely unexplored. Here we investigated the possible oncogenic interactions and cooperation between genes containing germline variation from genome-wide association studies (GWAS) and genes containing somatic mutations from tumor genomes of 305 men with aggressive tumors and 52 control samples from The Cancer Genome Atlas (TCGA). Network and pathway analysis were performed to identify molecular networks and biological pathways enriched for germline and somatic mutations. The analysis revealed 90 functionally related genes containing both germline and somatic mutations. Transcriptome analysis revealed a 61-gene signature containing both germline and somatic mutations. Network analysis revealed molecular networks of functionally related genes and biological pathways including P53, STAT3, NKX3-1, KLK3, and Androgen receptor signaling pathways enriched for germline and somatic mutations. The results show that integrative analysis is a powerful approach to uncovering the possible oncogenic interactions and cooperation between germline and somatic mutations and understanding the broader biological context in which they operate in aggressive PCa.


The Prostate ◽  
2010 ◽  
Vol 71 (9) ◽  
pp. 955-963 ◽  
Author(s):  
Yizhen Lu ◽  
Zheng Zhang ◽  
Hongjie Yu ◽  
S. Lily Zheng ◽  
William B. Isaacs ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Zoe Guan ◽  
Ronglai Shen ◽  
Colin B. Begg

<b><i>Background:</i></b> Many cancer types show considerable heritability, and extensive research has been done to identify germline susceptibility variants. Linkage studies have discovered many rare high-risk variants, and genome-wide association studies (GWAS) have discovered many common low-risk variants. However, it is believed that a considerable proportion of the heritability of cancer remains unexplained by known susceptibility variants. The “rare variant hypothesis” proposes that much of the missing heritability lies in rare variants that cannot reliably be detected by linkage analysis or GWAS. Until recently, high sequencing costs have precluded extensive surveys of rare variants, but technological advances have now made it possible to analyze rare variants on a much greater scale. <b><i>Objectives:</i></b> In this study, we investigated associations between rare variants and 14 cancer types. <b><i>Methods:</i></b> We ran association tests using whole-exome sequencing data from The Cancer Genome Atlas (TCGA) and validated the findings using data from the Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG). <b><i>Results:</i></b> We identified four significant associations in TCGA, only one of which was replicated in PCAWG (BRCA1 and ovarian cancer). <b><i>Conclusions:</i></b> Our results provide little evidence in favor of the rare variant hypothesis. Much larger sample sizes may be needed to detect undiscovered rare cancer variants.


2009 ◽  
Vol 18 (4) ◽  
pp. 1285-1289 ◽  
Author(s):  
Kevin M. Waters ◽  
Loic Le Marchand ◽  
Laurence N. Kolonel ◽  
Kristine R. Monroe ◽  
Daniel O. Stram ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Monet Stevenson ◽  
Narendra Narendra Banerjee ◽  
Narendra Banerjee ◽  
Kuldeep Rawat ◽  
Lin Chen ◽  
...  

Considering the prevalence of prostate cancer all over the world, it is desired to have tools, technologies, and biomarkers which help in early detection of the disease and discriminate different races and ethnic groups. Genetic information from the single gene analysis and genome-wide association studies have identified few biomarkers, however, the drivers of prostate cancer remain unknown in the majority of prostate cancer patients. In those cases where genetic association has been identified, the genes confer only a modest risk of this cancer, hence, making them less relevant for risk counseling and disease management. There is a need for additional biomarkers for diagnosis and prognosis of prostate cancer. MicroRNAs are a class of non-protein coding RNA molecules that are frequently dysregulated in different cancers including prostate cancer and show promise as diagnostic biomarkers and targets for therapy. Here we describe the role of micro RNA 146a (miR-146a) which may serve as a diagnostic and prognostic marker for prostate cancer, as indicated from the data presented in this report. Also, a pilot study indicated differential expression of miR-146a in prostate cancer cell lines and tissues from different racial groups. Reduced expression of miR-146a was observed in African American tumor tissues compared to those from European Whites This report provides a novel insight into understanding the prostate carcinogenesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xianzhong Jiang ◽  
Bin Zhang ◽  
Junsheng Zhao ◽  
Yi Xu ◽  
Haijun Han ◽  
...  

Abstract Single nucleotide polymorphisms (SNPs) and genes associated with susceptibility to hepatitis B virus (HBV) infection that have been identified by genome-wide association studies explain only a limited portion of the known heritability, indicating more genetic variants remain to be discovered. In this study, we adopted a new research strategy to identify more susceptibility genes and variants for HBV infection. We first performed genetic association analysis of 300 sib-pairs and 3,087 case-control samples, which revealed that 36 SNPs located in 31 genes showed nominal associations with HBV infection in both samples. Of these genes, we selected SEC24D for further molecular analysis according to the following two main lines of evidence. First, a time course analysis of the expression profiles from HBV-infected primary human hepatocytes (PHH) demonstrated that SEC24D expression increased markedly as time passed after HBV infection (P = 4.0 × 10−4). Second, SNP rs76459466 in SEC24D was adversely associated with HBV risk (ORmeta = 0.82; Pmeta = 0.002), which again indicated that SEC24D represents a novel susceptibility gene for HBV infection. Moreover, SEC24D appeared to be protective against HBV infection in vitro. Consistently, we found that SEC24D expression was significantly enhanced in non-infected liver tissues (P = 0.002). We conclude that SEC24D is a novel candidate gene linked to susceptibility to HBV infection.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryo Takata ◽  
Atsushi Takahashi ◽  
Masashi Fujita ◽  
Yukihide Momozawa ◽  
Edward J. Saunders ◽  
...  

Abstract Genome-wide association studies (GWAS) have identified ~170 genetic loci associated with prostate cancer (PCa) risk, but most of them were identified in European populations. We here performed a GWAS and replication study using a large Japanese cohort (9,906 cases and 83,943 male controls) to identify novel susceptibility loci associated with PCa risk. We found 12 novel loci for PCa including rs1125927 (TMEM17, P = 3.95 × 10−16), rs73862213 (GATA2, P = 5.87 × 10−23), rs77911174 (ZMIZ1, P = 5.28 × 10−20), and rs138708 (SUN2, P = 1.13 × 10−15), seven of which had crucially low minor allele frequency in European population. Furthermore, we stratified the polygenic risk for Japanese PCa patients by using 82 SNPs, which were significantly associated with Japanese PCa risk in our study, and found that early onset cases and cases with family history of PCa were enriched in the genetically high-risk population. Our study provides important insight into genetic mechanisms of PCa and facilitates PCa risk stratification in Japanese population.


Sign in / Sign up

Export Citation Format

Share Document