scholarly journals Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development

Development ◽  
2010 ◽  
Vol 137 (7) ◽  
pp. 1189-1203 ◽  
Author(s):  
S. Hartwig ◽  
J. Ho ◽  
P. Pandey ◽  
K. MacIsaac ◽  
M. Taglienti ◽  
...  
Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2969-2976 ◽  
Author(s):  
Kazushi Inoue ◽  
Hiroya Tamaki ◽  
Hiroyasu Ogawa ◽  
Yoshihiro Oka ◽  
Toshihiro Soma ◽  
...  

The WT1 gene is a tumor-suppressor gene that was isolated as a gene responsible for Wilms' tumor, a childhood kidney neoplasm. We have previously reported that the WT1 gene is strongly expressed in leukemia cells with an increase in its expression levels at relapse and an inverse correlation between its expression levels and prognosis, thus making it a novel tumor marker for leukemic blast cells. Furthermore, WT1 antisense oligomers have been found to inhibit the growth of leukemic cells. These results strongly suggested the involvement of the WT1 gene in human leukemogenesis. The present study was performed to prove our hypothesis that the WT1 gene plays a key role in leukemogenesis and performs an oncogenic function in hematopoietic progenitor cells, rather than a tumor-suppressor gene function. 32D cl3, an interleukin-3–dependent myeloid progenitor cell line, differentiates into mature neutrophils in response to granulocyte colony-stimulating factor (G-CSF). However, when transfected wild-type WT1 gene was constitutively expressed in 32D cl3, the cells stopped differentiating and continued to proliferate in response to G-CSF. As for signal transduction mediated by G-CSF receptor (G-CSFR), Stat3α was constitutively activated in wild-type WT1-infected 32D cl3 in response to G-CSF, whereas, in WT1-uninfected 32D cl3, activation of Stat3α was only transient. However, most interesting was the fact that G-CSF stimulation resulted in constitutive activation of Stat3β only in wild-type WT1-infected 32D cl3, but not in WT1-uninfected 32D cl3. Thus, WT1 expression constitutively activated both Stat3α and Stat3β. A transient activation of Stat1 was detected in both wild-type WT1-infected and uninfected 32D cl3 after G-CSF stimulation, but no difference in its activation was found. No activation of MAP kinase was detected in both wild-type WT1-infected and uninfected 32D cl3 after G-CSF stimulation. These results demonstrated that WT1 expression competed with the differentiation-inducing signal mediated by G-CSFR and constitutively activated Stat3, resulting in the blocking of differentiation and subsequent proliferation. Therefore, the data presented here support our hypothesis that the WT1 gene plays an essential role in leukemogenesis and performs an oncogenic function in hematopoietic progenitor cells and represent the first demonstration of an important role of the WT1 gene in signal transduction in hematopoietic progenitor cells.


2000 ◽  
Vol 11 (suppl 2) ◽  
pp. S106-S115 ◽  
Author(s):  
CHRISTIAN MROWKA ◽  
ANDREAS SCHEDL

Abstract.Normal development of the kidney is a highly complex process that requires precise orchestration of proliferation, differentiation, and apoptosis. In the past few years, a number of genes that regulate these processes, and hence play pivotal roles in kidney development, have been identified. The Wilms' tumor suppressor geneWT1has been shown to be one of these essential regulators of kidney development, and mutations in this gene result in the formation of tumors and developmental abnormalities such as the Denys-Drash and Frasier syndromes. A fascinating aspect of theWT1gene is the multitude of isoforms produced from its genomic locus. In this review, our current understanding of the structural features ofWT1, how they modulate the transcriptional and post-transcriptional activities of the protein, and how mutations affecting individual isoforms can lead to diseased kidneys is summarized. In addition, results from transgenic experiments, which have yielded important findings regarding the function of WT1in vivo, are discussed. Finally, data on the unusual feature of RNA editing ofWT1transcripts are presented, and the relevance of RNA editing for the normal functioning of the WT1 protein in the kidney is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksandra Cwiek ◽  
Masako Suzuki ◽  
Kimberly deRonde ◽  
Mark Conaway ◽  
Kevin M. Bennett ◽  
...  

AbstractPreterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.


2011 ◽  
Vol 96 (7) ◽  
pp. E1131-E1136 ◽  
Author(s):  
B. Köhler ◽  
H. Biebermann ◽  
V. Friedsam ◽  
J. Gellermann ◽  
R. F. Maier ◽  
...  

Abstract Context: The Wilms' tumor suppressor gene (WT1) is one of the major regulators of early gonadal and kidney development. WT1 mutations have been identified in 46,XY disorders of sex development (DSD) with associated kidney disease and in few isolated forms of 46,XY DSD. Objective: The objective of the study was the evaluation of WT1 mutations in different phenotypes of isolated 46,XY DSD and clinical consequences. Design: The design of the study was: 1) sequencing of the WT1 gene in 210 patients with 46,XY DSD from the German DSD network, consisting of 150 males with severe hypospadias (70 without cryptorchidism, 80 with at least one cryptorchid testis), 10 males with vanishing testes syndrome, and 50 raised females with partial to complete 46,XY gonadal dysgenesis; and 2) genotype-phenotype correlation of our and all published patients with 46,XY DSD and WT1 mutations. Results: We have detected WT1 mutations in six of 80 patients with severe hypospadias (7.5%) and at least one cryptorchid testis and in one of 10 patients with vanishing testes syndrome (10%). All patients except one developed Wilms' tumor and/or nephropathy in childhood or adolescence. Conclusion: WT1 analysis should be performed in newborns with complex hypospadias with at least one cryptorchid testis and in isolated 46,XY partial to complete gonadal dysgenesis. Kidney disease might not develop until later life in these cases. WT1 analysis is mandatory in all 46,XY DSD with associated kidney disease. WT1 analysis is not indicated in newborns with isolated hypospadias without cryptorchidism. Patients with WT1 mutations should be followed up closely because the risk of developing a Wilms' tumor, nephropathy, and/or gonadal tumor is very high.


2014 ◽  
Vol 53 (12) ◽  
pp. 6309-6320 ◽  
Author(s):  
Ka Lam Chan ◽  
Inna Bakman ◽  
Amy R. Marts ◽  
Yuksel Batir ◽  
Terry L. Dowd ◽  
...  

Biochemistry ◽  
2001 ◽  
Vol 40 (7) ◽  
pp. 2032-2040 ◽  
Author(s):  
Gary Zhai ◽  
Maya Iskandar ◽  
Kathleen Barilla ◽  
Paul J. Romaniuk

Oncogene ◽  
2010 ◽  
Vol 30 (7) ◽  
pp. 832-842 ◽  
Author(s):  
M K-H Kim ◽  
D J Min ◽  
M Rabin ◽  
J D Licht

2019 ◽  
Vol 6 ◽  
pp. 205435811987193
Author(s):  
Rosalie E. O’Hara ◽  
Michel G. Arsenault ◽  
Blanca P. Esparza Gonzalez ◽  
Ashley Patriquen ◽  
Sunny Hartwig

Background: Nephron progenitor cells derived from the metanephric mesenchyme undergo a complex balance of self-renewal and differentiation throughout kidney development to give rise to the mature nephron. Cell proliferation is an important index of progenitor population dynamics. However, accurate and reproducible in situ quantification of cell proliferation within progenitor populations can be technically difficult to achieve due to the complexity and harsh tissue treatment required of certain protocols. Objective: To optimize and compare the performance of the 3 most accurate S phase–specific labeling methods used for in situ detection and quantification of nephron progenitor and ureteric bud cell proliferation in the developing kidney, namely, 5-bromo-2’-deoxyuridine (BrdU), 5-ethynyl-2’-deoxyuridine (EdU), and proliferating cell nuclear antigen (PCNA). Methods: Protocols for BrdU, EdU, and PCNA were optimized for fluorescence labeling on paraformaldehyde-fixed, paraffin-embedded mouse kidney tissue sections, with co-labeling of nephron progenitor cells and ureteric bud with Six2 and E-cadherin antibodies, respectively. Image processing and analysis, including quantification of proliferating cells, were carried out using free ImageJ software. Results: All 3 methods detect similar ratios of nephron progenitor and ureteric bud proliferating cells. The BrdU staining protocol is the lengthiest and most complex protocol to perform, requires tissue denaturation, and is most subject to interexperimental signal variability. In contrast, bound PCNA and EdU protocols are relatively more straightforward, consistently yield clear results, and far more easily lend themselves to co-staining; however, the bound PCNA protocol requires substantive additional postexperimental analysis to distinguish the punctate nuclear PCNA staining pattern characteristic of proliferating cells. Conclusions: All 3 markers exhibit distinct advantages and disadvantages in quantifying cell proliferation in kidney progenitor populations, with EdU and PCNA protocols being favored due to greater technical ease and reproducibility of results associated with these methods.


Sign in / Sign up

Export Citation Format

Share Document