scholarly journals Three Optimized Methods for In Situ Quantification of Progenitor Cell Proliferation in Embryonic Kidneys Using BrdU, EdU, and PCNA

2019 ◽  
Vol 6 ◽  
pp. 205435811987193
Author(s):  
Rosalie E. O’Hara ◽  
Michel G. Arsenault ◽  
Blanca P. Esparza Gonzalez ◽  
Ashley Patriquen ◽  
Sunny Hartwig

Background: Nephron progenitor cells derived from the metanephric mesenchyme undergo a complex balance of self-renewal and differentiation throughout kidney development to give rise to the mature nephron. Cell proliferation is an important index of progenitor population dynamics. However, accurate and reproducible in situ quantification of cell proliferation within progenitor populations can be technically difficult to achieve due to the complexity and harsh tissue treatment required of certain protocols. Objective: To optimize and compare the performance of the 3 most accurate S phase–specific labeling methods used for in situ detection and quantification of nephron progenitor and ureteric bud cell proliferation in the developing kidney, namely, 5-bromo-2’-deoxyuridine (BrdU), 5-ethynyl-2’-deoxyuridine (EdU), and proliferating cell nuclear antigen (PCNA). Methods: Protocols for BrdU, EdU, and PCNA were optimized for fluorescence labeling on paraformaldehyde-fixed, paraffin-embedded mouse kidney tissue sections, with co-labeling of nephron progenitor cells and ureteric bud with Six2 and E-cadherin antibodies, respectively. Image processing and analysis, including quantification of proliferating cells, were carried out using free ImageJ software. Results: All 3 methods detect similar ratios of nephron progenitor and ureteric bud proliferating cells. The BrdU staining protocol is the lengthiest and most complex protocol to perform, requires tissue denaturation, and is most subject to interexperimental signal variability. In contrast, bound PCNA and EdU protocols are relatively more straightforward, consistently yield clear results, and far more easily lend themselves to co-staining; however, the bound PCNA protocol requires substantive additional postexperimental analysis to distinguish the punctate nuclear PCNA staining pattern characteristic of proliferating cells. Conclusions: All 3 markers exhibit distinct advantages and disadvantages in quantifying cell proliferation in kidney progenitor populations, with EdU and PCNA protocols being favored due to greater technical ease and reproducibility of results associated with these methods.

1994 ◽  
Vol 6 (4) ◽  
pp. 453-457 ◽  
Author(s):  
Alain Pierre Théon ◽  
Loretta Metzger ◽  
Stephen Griffey

Cell proliferation in canine, feline, and equine tumors was evaluated using immunohistochemical detection of in vitro 5–bromodeoxyuridine (BrdU) incorporation, proliferating cell nuclear antigen (PCNA), and interchromatin-associated antigen (p105). Ten tumors in each species were analyzed. The tumor proliferative fraction (PF) was defined as the percentage of labeled nuclei for 5,000 tumor nuclei counted. Immunoreactivity was observed with all techniques in all species. A good correlation was observed between the proliferative fractions measured with the BrdU (PFBrdU) and PCNA (PFPCNA) techniques ( rs = 0.523, P = 0.0026). There was no correlation between the PFs measured with the BrdU (PFBrdU) and p105 (PFP105) techniques. Using the median values obtained from the different approaches as cutoff points to define slowly and rapidly proliferating tumors, there was an 80% agreement ( P = 0.009) between PFBrdU and PFPCNA and no agreement between PFBrdU and PFP105 The results of this study indicate that both BrdU and PCNA labeling methods can be used reliably for identifying proliferating cells in animal tumors. In addition, PCNA could be used to replace the BrdU method to assess tumor proliferative fraction because it does not require pretreatment of tissues.


Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 813-820
Author(s):  
L.L. Harris ◽  
J.C. Talian ◽  
P.S. Zelenka

The present study uses the polymerase chain reaction and in situ hybridization to examine c-myc and N-myc mRNA in the embryonic chicken lens at 6, 10, 14 and 19 days of development and compares the pattern of expression obtained with the developmental pattern of cell proliferation and differentiation. In the central epithelium, c-myc mRNA levels were proportional to the percentage of proliferating cells throughout development. N-myc mRNA expression in this region was relatively low and showed no correlation with cell proliferation. The ratio of N-myc to c-myc mRNA increased markedly with the onset of epithelial cell elongation and terminal fiber cell differentiation, although both c-myc and N-myc mRNAs continued to be expressed in postmitotic, elongating cells of the equatorial epithelium and in terminally differentiating lens fiber cells. Thus, increased expression of N-myc, a gene whose protein product may compete with c-myc protein for dimerization partners, accompanies the dissociation of c-myc expression and cell proliferation during terminal differentiation of lens fiber cells.


2017 ◽  
Vol 67 (1) ◽  
pp. 1-10
Author(s):  
Gordana Joksić ◽  
Mileva Mićić ◽  
Jelena Filipović ◽  
Dunja Drakulić ◽  
Miloš Stanojlović ◽  
...  

AbstractThe study of cell proliferation is a useful tool in the fields of toxicology, pathophysiology and pharmacology. Cell proliferation and its degree can be evaluated using 5-bromo-2′-deoxyuridine which is incorporated into the newly synthesized DNA. The aim of this study was the optimization of subcutaneous application of 5-bromo-2′-deoxyuridine implantation for continuous and persistent marking of proliferating cells in the rat forestomach. 3-tert-Butyl-4-hydroxyanisole was used as the agent that ensures cell proliferation. In order to determine the optimal dose for proliferating cells labeling, 5-bromo-2′-deoxyuridine doses of 50 mg, 100 mg, 200 mg or 350 mg were implemented 2 days prior to sacrifice by flat-faced cylindrical matrices. Immunohistochemical analysis using 5-bromo-2′-deoxyuridine in situ detection kit was performed for the detection of 5-bromo-2′-deoxyuridine labeled cells. The results showed that for adult rats, the optimum 5-bromo-2′-deoxyuridine dose is 200 mg per animal for subcutaneous application. The here described manner of 5-bromo-2′-deoxyuridine in vivo labeling provides a simple, efficient, and reliable method for cell labeling, and at the same minimizes stress to animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksandra Cwiek ◽  
Masako Suzuki ◽  
Kimberly deRonde ◽  
Mark Conaway ◽  
Kevin M. Bennett ◽  
...  

AbstractPreterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.


1992 ◽  
Vol 102 (1) ◽  
pp. 71-78 ◽  
Author(s):  
SANDRA CITTERIO ◽  
SERGIO SGORBATI ◽  
MARISA LEVI ◽  
BRUNO MARIA COLOMBO ◽  
ELIO SPARVOLI

The identification of cell proliferation markers has been shown to be a useful tool with which to study basic mechanisms of cell cycle progression. The use of immunofluorescence techniques revealed the presence of the proliferating cell nuclear antigen (PCNA) in pea tissue, where we observed a high PCNA expression in proliferating cells of the root meristem compared to noncycling cells of the differentiated leaf. The presence of PCNA was monitored also during the time-course of seed germination, before, during and after the cell cycle resumption of the embryo cells. PCNA is present in embryo cells not only during and after resumption of the cell cycle but also before, when cells have not yet begun replicating their genome. A bivariate flow cytometric analysis of DNA and nuclear protein content was used to localize precisely the cells of the examined pea tissues in different cell cycle phase subcompartments. A high correlation was found between the degree of cell proliferation and the protein content of G1 nuclei, on the one hand, and the percentage of PCNA positive cells on the other.


Development ◽  
2010 ◽  
Vol 137 (7) ◽  
pp. 1189-1203 ◽  
Author(s):  
S. Hartwig ◽  
J. Ho ◽  
P. Pandey ◽  
K. MacIsaac ◽  
M. Taglienti ◽  
...  

Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 467-480 ◽  
Author(s):  
Sarah J Holdsworth-Carson ◽  
Dong Zhao ◽  
Leonie Cann ◽  
Sophie Bittinger ◽  
Cameron J Nowell ◽  
...  

Uterine fibroids are clonally derived from a single cell; however, despite being monoclonal, the cellular phenotypes that make up uterine fibroids are heterogeneous consisting of predominantly smooth muscle cells (SMC) and fibroblasts. This raises the question as to when clonal cell differentiation occurs during fibroid development, and does this information provide clues about possible mechanisms regulating the growth process that leads to fibroids of symptom-causing size? This study investigated the differences in the cellular composition of fibroids by immunohistochemistry (IHC). A tissue microarray (n = 21 hysterectomy cases) was used for the investigation of large uterine fibroids and normal myometrium. An investigation of small fibroids (≤ 5mm) used a separate group of samples (n = 7 hysterectomy cases, total ofn = 17 fibroids). A panel of cell phenotypic markers was selected based on our previousin situinvestigations and included aldehyde dehydrogenase 1 (ALDH1A1) and vimentin for different fibroblast sub-populations, smooth muscle actin (SMA) as a marker for SMCs, CD31 for endothelial cells and CD45 for leucocytes. Proliferating cell nuclear antigen (PCNA) was also studied to identify proliferating cells. The cellular composition of small fibroids differs significantly from large fibroids. Small fibroids are more cellular (increased cells/mm2) than large fibroids, have more blood vessels and also have a higher ratio of SMC to fibroblasts than large fibroids. Large fibroids have more cell proliferation (measured by PCNA) and fewer leucocytes (measured by CD45) than adjacent myometrium, whereas small fibroids are less proliferative and have similar number of leucocytes to myometrium. Different cellular composition between fibroids of different sizes may provide important clues as to the mechanisms that drive fibroid growth.


2004 ◽  
Vol 286 (4) ◽  
pp. F625-F633 ◽  
Author(s):  
P. Vrljicak ◽  
D. Myburgh ◽  
A. K. Ryan ◽  
M. A. van Rooijen ◽  
C. L. Mummery ◽  
...  

Signaling by the transforming growth factor (TGF)-β superfamily is important during kidney development. Here, we describe the spatial and temporal expression patterns of the Smads, the transcription factors that translate TGF-β signals into gene expression. RT-PCR data and in situ hybridization analysis showed that the receptor-regulated (R) Smads (Smad1, -2, -3, -5, and -8), the common partner Smad (Smad4), and the inhibitory (I) Smads (Smad6 and -7) were all expressed during mouse kidney development from embryonic day 12 until the end of nephrogenesis at postnatal day 15. Each Smad had a distinct spatial distribution. All were expressed by mesenchymal cells in the nephrogenic zone and were downregulated once these cells began to epithelialize. The common partner Smad, Smad4, was present in uninduced mesenchymal cells and at ureteric bud tips. The bone morphogenetic-responsive R-Smads, Smad1, -5, and -8, were mainly expressed in the nephrogenic zone, whereas the TGF-β- responsive R-Smads were predominantly noted in the medullary interstitium. Expression of the I-Smad Smad7 was also seen in mesenchymal cells in the interstitium. Based on the observed patterns of expression, we speculate that individual or combinations of Smads may play specific roles in cell-fate determination during kidney development.


2019 ◽  
Author(s):  
Ashwani K. Gupta ◽  
Prasenjit Sarkar ◽  
Xinchao Pan ◽  
Thomas Carroll ◽  
Leif Oxburgh

ABSTRACTRecent years have seen rapid advances in directed differentiation of human pluripotent stem cells (PSCs) to kidney cells. However, a fundamental difficulty in emulating kidney tissue formation is that kidney development is iterative. Recent studies argue that the human nephron forms through gradual contribution of nephron progenitor cells whose differentiation fates depend on the time at which they are recruited. We show that the majority of PSC-derived nephron progenitor cells differentiated in a short wave in organoid formation and to improve fidelity of PSC-derived organoids, we emulated the asynchronous mix found in the fetal kidney by combining cells differentiated at different times in the same organoid. Asynchronous mixing promoted nephrogenesis, and lineage marking data showed that proximal and distal nephron components preferentially derive from cell populations differentiated at distinct times. When engrafted under the kidney capsule these heterochronic organoids were vascularized and displayed essential features of kidney tissue. Micro-CT and injection of a circulating vascular marker demonstrated that engrafted kidney tissue was connected to the systemic circulation by 2 weeks after engraftment. Proximal tubule glucose uptake was confirmed using intravenous injection of fluorescent dextran. Despite these promising measures of graft function, overgrowth of stromal cells prevented long-term study, and we propose that this is a technical feature of the engraftment procedure rather than a specific shortcoming of the directed differentiation because kidney organoids derived from primary cells and whole embryonic kidneys develop the same stromal overgrowth when engrafted under the kidney capsule.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alison E. Jarmas ◽  
Eric W. Brunskill ◽  
Praneet Chaturvedi ◽  
Nathan Salomonis ◽  
Raphael Kopan

AbstractMammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/− nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.


Sign in / Sign up

Export Citation Format

Share Document