Biochemical differentiation in a mutant of Dictyostelium discoideum defective in cyclic AMP chemotaxis and in intercellular cohesion

Development ◽  
1989 ◽  
Vol 107 (1) ◽  
pp. 153-163
Author(s):  
U.K. Srinivas ◽  
E.J. Henderson

A temperature-sensitive mutant of Dictyostelium discoideum has been isolated based on its lack of chemotaxis toward cyclic AMP at the restrictive temperature, 27 degrees C. The mutant develops normally at the permissive temperature, 22 degrees C, but fails to aggregate or complete development at the restrictive temperature. The temperature-sensitive phenotype can be bypassed by allowing cultures to grown into late log phase or to starve for 60–90 min at 22 degrees C prior to a shift to 27 degrees C. At 27 degrees C, the mutant overproduces cell surface cyclic AMP receptors of both high and low affinity and is capable of spontaneous oscillations in light scattering in cell suspensions. Despite its complete lack of morphological development, the mutant undergoes extensive biochemical differentiation. At the onset of starvation, it shows increased levels of N-acetylglucosaminidase, it express cyclic AMP receptors at the normal time and, although somewhat slowly, suppresses those receptors as if aggregation had been achieved. Metabolic pulse labellings with [35S]methionine revealed that the mutant at 27 degrees C displays the same changes in the patterns of newly synthesized proteins observed during the vegetative-to-aggregation and the aggregation-to-slug stages of normal development. The only clear difference from wild type was the failure of the culmination-stage isozyme of beta-glucosidase to appear. The mutant is defective in establishment of intercellular cohesion mechanisms, correlated with poor agglutination by concanavalin A, at the restrictive temperature. The properties of the mutant place severe constraints on models regarding the role of chemoreception and intercellular cohesion in regulation of gene expression.

1993 ◽  
Vol 4 (9) ◽  
pp. 931-939 ◽  
Author(s):  
D Feldheim ◽  
K Yoshimura ◽  
A Admon ◽  
R Schekman

SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.


2006 ◽  
Vol 5 (10) ◽  
pp. 1797-1806 ◽  
Author(s):  
Turgay Tekinay ◽  
Mary Y. Wu ◽  
Grant P. Otto ◽  
O. Roger Anderson ◽  
Richard H. Kessin

ABSTRACT When starved, the amoebae of Dictyostelium discoideum initiate a developmental process that results in the formation of fruiting bodies in which stalks support balls of spores. The nutrients and energy necessary for development are provided by autophagy. Atg1 is a protein kinase that regulates the induction of autophagy in the budding yeast Saccharomyces cerevisiae. In addition to a conserved kinase domain, Dictyostelium Atg1 has a C-terminal region that has significant homology to the Caenorhabditis elegans and mammalian Atg1 homologues but not to the budding yeast Atg1. We investigated the function of the kinase and conserved C-terminal domains of D. discoideum Atg1 (DdAtg1) and showed that these domains are essential for autophagy and development. Kinase-negative DdAtg1 acts in a dominant-negative fashion, resulting in a mutant phenotype when expressed in the wild-type cells. Green fluorescent protein-tagged kinase-negative DdAtg1 colocalizes with red fluorescent protein (RFP)-tagged DdAtg8, a marker of preautophagosomal structures and autophagosomes. The conserved C-terminal region is essential for localization of kinase-negative DdAtg1 to autophagosomes labeled with RFP-tagged Dictyostelium Atg8. The dominant-negative effect of the kinase-defective mutant also depends on the C-terminal domain. In cells expressing dominant-negative DdAtg1, autophagosomes are formed and accumulate but seem not to be functional. By using a temperature-sensitive DdAtg1, we showed that DdAtg1 is required throughout development; development halts when the cells are shifted to the restrictive temperature, but resumes when cells are returned to the permissive temperature.


1989 ◽  
Vol 94 (1) ◽  
pp. 33-42
Author(s):  
M. Kabemura ◽  
H. Shimura ◽  
A. Matsuzaki ◽  
M. Ohtsu ◽  
G. Kimura

Four temperature-sensitive mutants of rat 3Y1 fibroblasts representing separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125 and 3Y1tsH203) are arrested at a restrictive temperature of 39.8 degrees C mainly with a G1-phase DNA content (temperature arrest). Cholera toxin (CT) (3 micrograms ml-1) induced DNA synthesis at 39.8 degrees C in the temperature-arrested cultures of two mutants (3Y1tsD123 and 3Y1tsG125). This effect of CT was not mimicked by other agents known to elevate the cellular level of cyclic AMP, such as dibutyryl-cyclic AMP, prostaglandin E1 and forskolin, suggesting that the elevation of cellular cyclic AMP level per se is not responsible for the induction of DNA synthesis by CT. Addition of the B subunit of CT to the temperature-arrested cultures of 3Y1tsD123 and 3Y1tsG125 did not induce DNA synthesis at 39.8 degrees C, indicating that the binding of CT to the cell surface alone is insufficient for the induction. The CT-treated cell membrane fraction prepared from temperature-arrested 3Y1tsG125 cells had similar activity for [32P]ADP-ribosylation of the 45 X 10(3) Mr protein to that prepared from cells proliferating at a permissive temperature of 33.8 degrees C. All these results suggest that 3Y1tsG125 cells utilize a CT-responsive signal transduction pathway, different from adenylate cyclase cascade, for preparation for entry into S phase in the temperature-arrested 3Y1tsG125.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 127 (2) ◽  
pp. 387-399 ◽  
Author(s):  
R A Bacon ◽  
C J Cohen ◽  
D A Lewin ◽  
I Mellman

We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning.


1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


1988 ◽  
Vol 255 (3) ◽  
pp. C261-C270 ◽  
Author(s):  
M. E. Handlogten ◽  
M. S. Kilberg

Fetal RLA209-15 hepatocytes, transformed with a temperature-sensitive SV40 mutant, behave like fully differentiated cells at the growth-restrictive temperature of 40 degrees C. Conversely, incubation at the growth-permissive temperature of 33 degrees C results in a transformed phenotype characterized by rapid cell division and decreased production of liver-specific proteins. The results presented here demonstrate that the cells at 33 degrees C exhibited high rates of system A transport, but transfer to 40 degrees C reduced the activity greater than 50% within 24 h. This decline in transport was independent of cell density, although the basal rate of uptake was inversely proportional to cell density in rapidly dividing cells. Transfer of cells from 40 to 33 degrees C resulted in an enhancement of system A activity that was blocked by tunicamycin. Plasma membrane vesicles from cells maintained at either 33 or 40 degrees C retained uptake rates proportional to those in the intact cells; this difference in transport activity could also be demonstrated after detergent solubilization and reconstitution. Collectively, these data indicate that de novo synthesis of the system A carrier is regulated in conjunction with temperature-dependent cell growth in RLA209-15 hepatocytes.


1990 ◽  
Vol 10 (8) ◽  
pp. 4080-4088
Author(s):  
F Vauti ◽  
P Morandini ◽  
J Blusch ◽  
A Sachse ◽  
W Nellen

We dissected the promoter of the developmentally induced and cyclic AMP-repressed discoidin I gamma gene and identified a sequence element essential for developmental induction. Transfer of the element to an inactive heterologous promoter demonstrated that this sequence is sufficient to confer expression in axenically growing cells and to induce gene activity in development after growth on bacteria. A 16-base-pair sequence within this element was shown to be sufficient for induction in the discoidin promoter context and was used to reactivate different truncated promoter constructs. This led to the localization of an element necessary for down regulation of gene expression by extracellular cyclic AMP.


1999 ◽  
Vol 202 (4) ◽  
pp. 461-473
Author(s):  
R.I. Cohen ◽  
R. Mckay ◽  
G. Almazan

To facilitate the study of the molecular events underlying the development of optic-nerve-derived oligodendrocytes and their growth-factor-related signal transduction events, we immortalized perinatal rat optic nerve cells with a temperature-sensitive simian virus 40 large T-antigen, carrying the tsA58 and U19 mutations, via a retrovirus vector. The line, tsU19-9, was selected on the basis of the expression of the neural precursor marker nestin. At the permissive temperature, 33 degreesC, tsU19-9 cells had a flat epithelial morphology. In contrast, following exposure to platelet-derived growth factor (PDGF), a factor important in the lineage progression of oligodendrocytes, or in the presence of dibutyryl cyclic AMP at 39 degreesC (the non-permissive temperature), the cells underwent morphological and antigenic differentiation to cells characteristic of the oligodendrocyte lineage. We used this cell line to investigate the binding characteristics of PDGF and related signalling cascades. Competition binding, phosphoinositide hydrolysis and intracellular Ca2+ mobilization assays all demonstrated that the three different isoforms of PDGF (AA, AB and BB) bound to and acted on the cell line. Overnight exposure to forskolin, a treatment that initiated morphological and phenotypic progression into an oligodendrocyte lineage, decreased PDGF-BB-induced intracellular Ca2+ mobilization and inhibited basal and PDGF-stimulated [3H]thymidine incorporation. Our results demonstrate that tsU19-9 may serve as a resource to study early optic-nerve oligodendrocyte development.


1985 ◽  
Vol 5 (4) ◽  
pp. 902-905
Author(s):  
M Narkhammar ◽  
R Hand

ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.


Sign in / Sign up

Export Citation Format

Share Document