Induction of DNA synthesis by cholera toxin in the temperature-sensitive cell-cycle mutants of rat 3Y1 fibroblasts at a restrictive temperature

1989 ◽  
Vol 94 (1) ◽  
pp. 33-42
Author(s):  
M. Kabemura ◽  
H. Shimura ◽  
A. Matsuzaki ◽  
M. Ohtsu ◽  
G. Kimura

Four temperature-sensitive mutants of rat 3Y1 fibroblasts representing separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125 and 3Y1tsH203) are arrested at a restrictive temperature of 39.8 degrees C mainly with a G1-phase DNA content (temperature arrest). Cholera toxin (CT) (3 micrograms ml-1) induced DNA synthesis at 39.8 degrees C in the temperature-arrested cultures of two mutants (3Y1tsD123 and 3Y1tsG125). This effect of CT was not mimicked by other agents known to elevate the cellular level of cyclic AMP, such as dibutyryl-cyclic AMP, prostaglandin E1 and forskolin, suggesting that the elevation of cellular cyclic AMP level per se is not responsible for the induction of DNA synthesis by CT. Addition of the B subunit of CT to the temperature-arrested cultures of 3Y1tsD123 and 3Y1tsG125 did not induce DNA synthesis at 39.8 degrees C, indicating that the binding of CT to the cell surface alone is insufficient for the induction. The CT-treated cell membrane fraction prepared from temperature-arrested 3Y1tsG125 cells had similar activity for [32P]ADP-ribosylation of the 45 X 10(3) Mr protein to that prepared from cells proliferating at a permissive temperature of 33.8 degrees C. All these results suggest that 3Y1tsG125 cells utilize a CT-responsive signal transduction pathway, different from adenylate cyclase cascade, for preparation for entry into S phase in the temperature-arrested 3Y1tsG125.(ABSTRACT TRUNCATED AT 250 WORDS)

1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 49-68
Author(s):  
Yona Kassir ◽  
Giora Simchen

ABSTRACT Vegetative cells carrying the new temperature-sensitive mutation cdc40 arrest at the restrictive temperature with a medial nuclear division phenotype. DNA replication is observed under these conditions, but most cells remain sensitive to hydroxyurea and do not complete the ongoing cell cycle if the drug is present during release from the temperature block. It is suggested that the cdc40 lesion affects an essential function in DNA synthesis. Normal meiosis is observed at the permissive temperature in cdc40 homozygotes. At the restrictive temperature, a full round of premeiotic DNA replication is observed, but neither commitment to recombination nor later meiotic events occur. Meiotic cells that are already committed to the recombination process at the permissive temperature do not complete it if transferred to the restrictive temperature before recombination is realized. These temperature shift-up experiments demonstrate that the CDC40 function is required for the completion of recombination events, as well as for the earlier stage of recombination commitment. Temperature shift-down experiments with cdc40 homozygotes suggest that meiotic segregation depends on the final events of recombination rather than on commitment to recombination.


1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601 ◽  
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


Development ◽  
1989 ◽  
Vol 107 (1) ◽  
pp. 153-163
Author(s):  
U.K. Srinivas ◽  
E.J. Henderson

A temperature-sensitive mutant of Dictyostelium discoideum has been isolated based on its lack of chemotaxis toward cyclic AMP at the restrictive temperature, 27 degrees C. The mutant develops normally at the permissive temperature, 22 degrees C, but fails to aggregate or complete development at the restrictive temperature. The temperature-sensitive phenotype can be bypassed by allowing cultures to grown into late log phase or to starve for 60–90 min at 22 degrees C prior to a shift to 27 degrees C. At 27 degrees C, the mutant overproduces cell surface cyclic AMP receptors of both high and low affinity and is capable of spontaneous oscillations in light scattering in cell suspensions. Despite its complete lack of morphological development, the mutant undergoes extensive biochemical differentiation. At the onset of starvation, it shows increased levels of N-acetylglucosaminidase, it express cyclic AMP receptors at the normal time and, although somewhat slowly, suppresses those receptors as if aggregation had been achieved. Metabolic pulse labellings with [35S]methionine revealed that the mutant at 27 degrees C displays the same changes in the patterns of newly synthesized proteins observed during the vegetative-to-aggregation and the aggregation-to-slug stages of normal development. The only clear difference from wild type was the failure of the culmination-stage isozyme of beta-glucosidase to appear. The mutant is defective in establishment of intercellular cohesion mechanisms, correlated with poor agglutination by concanavalin A, at the restrictive temperature. The properties of the mutant place severe constraints on models regarding the role of chemoreception and intercellular cohesion in regulation of gene expression.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1561-1576
Author(s):  
Neil Macpherson ◽  
Vivien Measday ◽  
Lynda Moore ◽  
Brenda Andrews

Abstract In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Δ and slm8-1 swi6Δ double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17slm7-1 are consistent with the role of TAFIIs as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 561-577 ◽  
Author(s):  
Steven I Reed

ABSTRACT Thirty-three temperature-sensitive mutations defective in the start event of the cell division cycle of Saccharomyces cereuisiae were isolated and subjected to preliminary characterization. Complementation studies assigned these mutations to four complementation groups, one of which, cdc28, has been described previously. Genetic analysis revealed that these complementation groups define single nuclear genes, unlinked to one another. One of the three newly identified genes, cdc37, has been located in the yeast linkage map on chromosome IV, two meiotic map units distal to hom2.—Each mutation produces stage-specific arrest of cell division at start, the same point where mating pheromone interrupts division. After synchronization at start by incubation at the restrictive temperature, the mutants retain the capacity to enlarge and to conjugate.


1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


1988 ◽  
Vol 255 (3) ◽  
pp. C261-C270 ◽  
Author(s):  
M. E. Handlogten ◽  
M. S. Kilberg

Fetal RLA209-15 hepatocytes, transformed with a temperature-sensitive SV40 mutant, behave like fully differentiated cells at the growth-restrictive temperature of 40 degrees C. Conversely, incubation at the growth-permissive temperature of 33 degrees C results in a transformed phenotype characterized by rapid cell division and decreased production of liver-specific proteins. The results presented here demonstrate that the cells at 33 degrees C exhibited high rates of system A transport, but transfer to 40 degrees C reduced the activity greater than 50% within 24 h. This decline in transport was independent of cell density, although the basal rate of uptake was inversely proportional to cell density in rapidly dividing cells. Transfer of cells from 40 to 33 degrees C resulted in an enhancement of system A activity that was blocked by tunicamycin. Plasma membrane vesicles from cells maintained at either 33 or 40 degrees C retained uptake rates proportional to those in the intact cells; this difference in transport activity could also be demonstrated after detergent solubilization and reconstitution. Collectively, these data indicate that de novo synthesis of the system A carrier is regulated in conjunction with temperature-dependent cell growth in RLA209-15 hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document