Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 177-188 ◽  
Author(s):  
M. Servetnick ◽  
R.M. Grainger

The ability of a tissue to respond to induction, termed its competence, is often critical in determining both the timing of inductive interactions and the extent of induced tissue. We have examined the lens-forming competence of Xenopus embryonic ectoderm by transplanting it into the presumptive lens region of open neural plate stage embryos. We find that early gastrula ectoderm has little lens-forming competence, but instead forms neural tissue, despite its location outside the neural plate; we believe that the transplants are being neuralized by a signal originating in the host neural plate. This neural competence is not localized to a particular region within the ectoderm since both dorsal and ventral portions of early gastrula ectoderm show the same response. As ectoderm is taken from gastrulae of increasing age, its neural competence is gradually lost, while lens competence appears and then rapidly disappears during later gastrula stages. To determine whether these developmental changes in competence result from tissue interactions during gastrulation, or are due to autonomous changes within the ectoderm itself, ectoderm was removed from early gastrulae and cultured for various periods of time before transplantation. The loss of neural competence, and the gain and loss of lens competence, all occur in ectoderm cultured in vitro with approximately the same time course as seen in ectoderm in vitro. Thus, at least from the beginning of gastrulation onwards, changes in competence occur autonomously within ectoderm. We propose that there is a developmental timing mechanism in embryonic ectoderm that specifies a sequence of competences solely on the basis of the age of the ectoderm.

1936 ◽  
Vol 13 (2) ◽  
pp. 219-236
Author(s):  
C. H. WADDINGTON ◽  
A. COHEN

1. Experiments were made on the development of the head of chicken embryos cultivated in vitro. 2. Defects in the presumptive head region of primitive streak embryos are regulated completely if the wound fills up before the histogenesis of neural tissue begins in the head-process stage. Different methods by which the hole is filled are described. 3. No repair occurs in the head-process and head-fold stages, and in this period two masses of neural tissue cannot heal together. 4. Median defects, even if repaired as regards neural tissue, cause a failure of the ventral closure of the foregut. The lateral evaginations of the gut develop typically in atypical situations. The headfold may break through and join up with the endoderm in such a way that the gut acquires an anterior opening. 5. The paired heart rudiments may develop separately. The separate vesicles begin to contract at a time appropriate to the development of the embryo as a whole. The two hearts are mirror images, the left one having the normal curvature, but the embryos do not survive long enough for the hearts to acquire a very definite shape. 6. The forebrain has a considerable capacity for repair in the early somite stages (five to twenty-five somites). One-half of the forebrain can remodel itself into a complete forebrain. In some cases the neural plate and epidermis grow together over the wound, in others the epidermis and mesenchyme make the first covering, leaving a space along the inside of which the neural tissue grows. The neural tissue may become a very thin sheet. 7. The repaired forebrain may induce the formation of a nasal placode from the non-presumptive nasal epidermis which covers the wound. 8. If the optic vesicle is entirely removed, a new one is not formed, but parts of the vesicle can regulate to complete eye-cups, either when still attached to the forebrain or after being isolated in the extra-embryonic regions of another embryo. 9. Injured optic vesicles induce lenses from the non-presumptive epidermis which grows over the wound. Transplanted optic neural tissue from embryos of about five somites induces the formation of lentoids from extra-embryonic ectoderm, but only in a small proportion of cases. 10. The presumptive lens epidermis can produce a slight thickening even when contact with the optic cup is prevented. 11. The significance of periods of minimum regulatory power for the concept of determination is discussed. 12. The data concerning lens formation are discussed in terms of the field concept.


Development ◽  
2001 ◽  
Vol 128 (4) ◽  
pp. 481-490
Author(s):  
T. Yoshimizu ◽  
M. Obinata ◽  
Y. Matsui

Primordial germ cells (PGCs) in mice have been recognized histologically as alkaline phosphatase (AP) activity-positive cells at 7.2 days post coitum (dpc) in the extra-embryonic mesoderm. However, mechanisms regulating PGC formation are unknown, and an appropriate in vitro system to study the mechanisms has not been established. Therefore, we have developed a primary culture of explanted embryos at pre- and early-streak stages, and have studied roles of cell and/or tissue interactions in PGC formation. The emergence of PGCs from 5.5 dpc epiblasts was observed only when they were co-cultured with extra-embryonic ectoderm, which may induce the conditions required for PGC formation within epiblasts. From 6.0 dpc onwards, PGCs emerged from whole epiblasts as did a fragment of proximal epiblast that corresponds to the area containing presumptive PGC precursors without neighboring extra-embryonic ectoderm and visceral endoderm. Dissociated epiblasts at these stages, however, did not give rise to PGCs, indicating that interactions among a cluster of a specific number of proximal epiblast cells is needed for PGC differentiation. In contrast, we observed that dissociated epiblast cells from a 6.5-b (6.5+15-16 hours) to 6.75 dpc embryo that had undergone gastrulation gave rise to PGCs. Our results demonstrate that stage-dependent tissue and cell interactions play key roles in PGC determination.


1993 ◽  
Vol 264 (5) ◽  
pp. R1017-R1023 ◽  
Author(s):  
G. Kortner ◽  
K. Schildhauer ◽  
O. Petrova ◽  
I. Schmidt

To determine developmental changes of brown adipose tissue (BAT) thermogenic activity at defined circadian and thermal states, we evaluated the time course of cold-induced increases of in vitro guanosine 5'-diphosphate (GDP) binding in parallel with whole body metabolism (oxygen consumption, VO2) and core temperature (Tc) in 1- to 11-day-old rat pups. During the maximum phase of the juvenile diurnal cycle, Tc of littermates was recorded continuously and VO2 alternately until 2 min before animals were killed for removal of interscapular BAT. GDP binding after 1.5 h at thermoneutrality and its increase during physiologically comparable cold loads were significantly lower in 1-day-old pups than in 5- and 11-day-old pups. Cold defense was activated more rapidly in the older pups, but GDP binding in even the 1-day-old pups was significantly increased during the second 10-min period of cold exposure. We conclude that rapid changes in thermogenic activity, in connection with the known developmental changes in the dependence of the suckling rat's metabolic cold defense on maternal and sibling contact and circadian phase, will distort longitudinal studies of any fast-changing BAT parameter when the conditions immediately before tissue removal are not thoroughly controlled.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3409-3418 ◽  
Author(s):  
N. Papalopulu ◽  
C. Kintner

During early development of the Xenopus central nervous system (CNS), neuronal differentiation can be detected posteriorly at neural plate stages but is delayed anteriorly until after neural tube closure. A similar delay in neuronal differentiation also occurs in the anterior neural tissue that forms in vitro when isolated ectoderm is treated with the neural inducer noggin. Here we examine the factors that control the timing of neuronal differentiation both in embryos and in neural tissue induced by noggin (noggin caps). We show that the delay in neuronal differentiation that occurs in noggin caps cannot be overcome by inhibiting the activity of the neurogenic gene, X-Delta-1, which normally inhibits neuronal differentiation, suggesting that it represents a novel level of regulation. Conversely, we show that the timing of neuronal differentiation can be changed from late to early after treating noggin caps or embryos with retinoic acid (RA), a putative posteriorising agent. Concommittal with changes in the timing of neuronal differentiation, RA suppresses the expression of anterior neural genes and promotes the expression of posterior neural genes. The level of early neuronal differentiation induced by RA alone is greatly increased by the additional expression of the proneural gene, XASH3. These results indicate that early neuronal differentiation in neuralised ectoderm requires posteriorising signals, as well as signals that promote the activity of proneural genes such as XASH3. In addition, these result suggest that neuronal differentiation is controlled by anteroposterior (A-P) patterning, which exerts a temporal control on the onset of neuronal differentiation.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1985 ◽  
Vol 54 (04) ◽  
pp. 842-848 ◽  
Author(s):  
Kandice Kottke-Marchant ◽  
James M Anderson ◽  
Albert Rabinovitch ◽  
Richard A Huskey ◽  
Roger Herzig

SummaryHeparin is known to affect platelet function in vitro, but little is known about the effect of heparin on the interaction of platelets with polymer surfaces in general, and vascular graft materials in particular. For this reason, the effect of heparin vs. citrate anticoagulation on the interaction of platelets with the vascular graft materials expanded polytetrafluoroethylene (ePTFE), Dacron Bionit (DB) and preclotted Dacron Bionit (DB/PC) was studied in a recirculating, in vitro perfusion system. Platelet activation, as shown by a decrease in platelet count, an increase in platelet release and a decrease in platelet aggregation, was observed for all vascular graft materials tested using heparin and was greater for Dacron and preclotted Dacron than for ePTFE. Significant differences between heparin and citrate anticoagulation were seen for platelet release, platelet aggregation and the relative ranking of material platelet-reactivity. However, the trends and time course of platelet activation were similar with both heparin and citrate for the materials tested.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


1973 ◽  
Vol 248 (8) ◽  
pp. 2922-2927
Author(s):  
Cornelius Hallahan ◽  
Donald A. Young ◽  
Allan Munck
Keyword(s):  

Cell Research ◽  
2021 ◽  
Author(s):  
Xiaoxiao Wang ◽  
Yunlong Xiang ◽  
Yang Yu ◽  
Ran Wang ◽  
Yu Zhang ◽  
...  

AbstractThe pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.


Sign in / Sign up

Export Citation Format

Share Document