The development of the sensory neuron pattern in the antennal disc of wild-type and mutant (lz3, ssa) Drosophila melanogaster

Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 1063-1075
Author(s):  
M.C. Lienhard ◽  
R.F. Stocker

The development of the sensory neuron pattern in the antennal disc of Drosophila melanogaster was studied with a neuron-specific monoclonal antibody (22C10). In the wild type, the earliest neurons become visible 3 h after pupariation, much later than in other imaginal discs. They lie in the center of the disc and correspond to the neurons of the adult aristal sensillum. Their axons join the larval antennal nerve and seem to establish the first connection towards the brain. Later on, three clusters of neurons appear in the periphery of the disc. Two of them most likely give rise to the Johnston's organ in the second antennal segment. Neurons of the olfactory third antennal segment are formed only after eversion of the antennal disc (clusters t1-t3). The adult pattern of antennal neurons is established at about 27% of metamorphosis. In the mutant lozenge3 (lz3), which lacks basiconic antennal sensilla, cluster t3 fails to develop. This indicates that, in the wild type, a homogeneous group of basiconic sensilla is formed by cluster t3. The possible role of the lozenge gene in sensillar determination is discussed. The homeotic mutant spineless-aristapedia (ssa) transforms the arista into a leg-like tarsus. Unlike leg discs, neurons are missing in the larval antennal disc of ssa. However, the first neurons differentiate earlier than in normal antennal discs. Despite these changes, the pattern of afferents in the ectopic tarsus appears leg specific, whereas in the non-transformed antennal segments a normal antennal pattern is formed. This suggests that neither larval leg neurons nor early aristal neurons are essential for the outgrowth of subsequent afferents.

2020 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Dorota Dabrowska ◽  
Justyna Mozejko-Ciesielska ◽  
Tomasz Pokój ◽  
Slawomir Ciesielski

Pseudomonas putida’s versatility and metabolic flexibility make it an ideal biotechnological platform for producing valuable chemicals, such as medium-chain-length polyhydroxyalkanoates (mcl-PHAs), which are considered the next generation bioplastics. This bacterium responds to environmental stimuli by rearranging its metabolism to improve its fitness and increase its chances of survival in harsh environments. Mcl-PHAs play an important role in central metabolism, serving as a reservoir of carbon and energy. Due to the complexity of mcl-PHAs’ metabolism, the manner in which P. putida changes its transcriptome to favor mcl-PHA synthesis in response to environmental stimuli remains unclear. Therefore, our objective was to investigate how the P. putida KT2440 wild type and mutants adjust their transcriptomes to synthesize mcl-PHAs in response to nitrogen limitation when supplied with sodium gluconate as an external carbon source. We found that, under nitrogen limitation, mcl-PHA accumulation is significantly lower in the mutant deficient in the stringent response than in the wild type or the rpoN mutant. Transcriptome analysis revealed that, under N-limiting conditions, 24 genes were downregulated and 21 were upregulated that were common to all three strains. Additionally, potential regulators of these genes were identified: the global anaerobic regulator (Anr, consisting of FnrA, Fnrb, and FnrC), NorR, NasT, the sigma54-dependent transcriptional regulator, and the dual component NtrB/NtrC regulator all appear to play important roles in transcriptome rearrangement under N-limiting conditions. The role of these regulators in mcl-PHA synthesis is discussed.


2003 ◽  
Vol 197 (10) ◽  
pp. 1297-1302 ◽  
Author(s):  
Martin Hegen ◽  
Linhong Sun ◽  
Naonori Uozumi ◽  
Kazuhiko Kume ◽  
Mary E. Goad ◽  
...  

Pathogenic mechanisms relevant to rheumatoid arthritis occur in the mouse model of collagen-induced arthritis (CIA). Cytosolic phospholipase A2α (cPLA2α) releases arachidonic acid from cell membranes to initiate the production of prostaglandins and leukotrienes. These inflammatory mediators have been implicated in the development of CIA. To test the hypothesis that cPLA2α plays a key role in the development of CIA, we backcrossed cPLA2α-deficient mice on the DBA/1LacJ background that is susceptible to CIA. The disease severity scores and the incidence of disease were markedly reduced in cPLA2α-deficient mice compared with wild-type littermates. At completion of the study, >90% of the wild-type mice had developed disease whereas none of the cPLA2α-deficient mice had more than one digit inflamed. Furthermore, visual disease scores correlated with severity of disease determined histologically. Pannus formation, articular fibrillation, and ankylosis were all dramatically reduced in the cPLA2α-deficient mice. Although the disease scores differed significantly between cPLA2α mutant and wild-type mice, anti-collagen antibody levels were similar in the wild-type mice and mutant littermates. These data demonstrate the critical role of cPLA2α in the pathogenesis of CIA.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1327-1338 ◽  
Author(s):  
Masanori Takahashi ◽  
Noriko Osumi

Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Rohan U Parekh ◽  
Abdel A Abdel-rahman ◽  
Srinivas Sriramula

Hyperactivity of the orexin system contributes to several animal models of hypertension and enhances arginine vasopressin (AVP) release. We previously reported higher neuronal kinin B1 receptor (B1R) expression and brain AVP levels in hypertensive mice. However, the role of B1R and its interaction with orexin system in neurogenic hypertension have not been studied. In the present study, we tested the hypothesis that kinin B1R contributes to hypertension by upregulation of orexin-AVP signaling in the brain. Deoxycorticosterone acetate (DOCA)-salt treatment (1 mg/g body weight DOCA, 1% saline in drinking water, 3 weeks) of wild-type (WT) male mice produced a significant increase in mean arterial pressure (MAP; radio-telemetry) (138 ±3 mmHg, n=8, p<0.01) that was blunted in B1R knockout mice (121±2 mmHg, P <0.05 vs. WT+DOCA). In WT mice, DOCA-salt, compared to vehicle, increased mRNA levels of orexin receptor 1 (2.5 fold, n=9, p<0.001), orexin receptor 2 (3 fold, n=9, p<0.001) and AVP (3 fold, n=9, p<0.01) in the hypothalamic paraventricular nucleus (PVN), and these DOCA-salt evoked effects were attenuated in B1RKO mice. Similarly, DOCA-salt evoked increases in protein expression of orexin receptor 1 and 2 in the hypothalamic PVN of WT mice were attenuated by 25±5% and 33±5% (p<0.05), respectively, in B1RKO vs WT+DOCA mice. Furthermore, DOCA-salt treatment increased plasma AVP levels in WT mice compared to vehicle treated mice (13.69±1.1 vs. 47.86±8.7 pg/ml, p<0.05), but not in B1RKO mice. Together, these data provide novel evidence that kinin B1R plays an important role in mediating DOCA-salt induced hypertension possibly via upregulating the orexin-AVP signaling in the brain.


2020 ◽  
Vol 61 (11) ◽  
pp. 1480-1490
Author(s):  
Lin Lin ◽  
Adam H. Metherel ◽  
Mathieu Di Miceli ◽  
Zhen Liu ◽  
Cigdem Sahin ◽  
...  

N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.


2019 ◽  
Vol 20 (12) ◽  
pp. 2982 ◽  
Author(s):  
Gil Yong Park ◽  
Angelo Jamerlan ◽  
Kyu Hwan Shim ◽  
Seong Soo A. An

Transthyretin (TTR) is a thyroid hormone-binding protein which transports thyroxine from the bloodstream to the brain. The structural stability of TTR in tetrameric form is crucial for maintaining its original functions in blood or cerebrospinal fluid (CSF). The altered structure of TTR due to genetic mutations or its deposits due to aggregation could cause several deadly diseases such as cardiomyopathy and neuropathy in autonomic, motor, and sensory systems. The early diagnoses for hereditary amyloid TTR with cardiomyopathy (ATTR-CM) and wild-type amyloid TTR (ATTRwt) amyloidosis, which result from amyloid TTR (ATTR) deposition, are difficult to distinguish due to the close similarities of symptoms. Thus, many researchers investigated the role of ATTR as a biomarker, especially its potential for differential diagnosis due to its varying pathogenic involvement in hereditary ATTR-CM and ATTRwt amyloidosis. As a result, the detection of ATTR became valuable in the diagnosis and determination of the best course of treatment for ATTR amyloidoses. Assessing the extent of ATTR deposition and genetic analysis could help in determining disease progression, and thus survival rate could be improved following the determination of the appropriate course of treatment for the patient. Here, the perspectives of ATTR in various diseases were presented.


1997 ◽  
Vol 326 (3) ◽  
pp. 861-866 ◽  
Author(s):  
Timothy P. O'CONNELL ◽  
Regina M. DAY ◽  
Ekaterina V. TORCHILIN ◽  
William W. BACHOVCHIN ◽  
J. Paul G. MALTHOUSE

By removing one of the hydrogen-bond donors in the oxyanion hole of subtilisin BPN, we have been able to determine how it affects the catalytic efficiency of the enzyme and the pKa of the oxyanion formed in a choloromethane inhibitor derivative. Variant 8397 of subtilisin BPN contains five mutations which enhance its stability. Site-directed mutagenesis was used to prepare the N155A mutant of this variant. The catalytic efficiencies of wild-type and variant 8397 are similar, but replacing Asn-155 with alanine reduces catalytic efficiency approx. 300-fold. All three forms of subtilisin were alkylated using benzyloxycarbonylglycylglycyl[2-13C]phenylalanylchloromethane and examined by 13C-NMR. A single signal due to the 13C-enriched carbon was detected in all the derivatives and it was assigned to the hemiketal carbon of a tetrahedral adduct formed between the hydroxy group of Ser-221 and the inhibitor. This signal had chemical shifts in the range 98.3–103.6 p.p.m., depending on the pH. The titration shift of 4.7–4.8 p.p.m. was assigned to oxyanion formation. The oxyanion pKa values in the wild-type and 8397 variants were 6.92 and 7.00 respectively. In the N155A mutant of the 8397 variant the oxyanion pKa increased to 8.09. We explain why such a small increase is observed and we conclude that it is the interaction between the oxyanion and the imidazolium cation of the active-site histidine that is the main factor responsible for lowering the oxyanion pKa.


The occurrence of mutants of Drosophila melanogaster distinguished by the absence or structural modification of the antennae provides a means of assessing the role of the antennae with respect to the reception of various classes of stimuli. Antennaless ( A 0 ) phenotypes of antennaless stock fail to respond to those chemical stimuli which lead the fly to its food. Their temperature reactions are normal, and their humidity responses are opposite to those of somatically wild-type flies of the same stock or of wild-type controls. Aristapedia ( ss a ), which have leg-like antennae equipped with surface pegs and cones of supposed sensory function present in the normal antenna but absent in the normal leg, respond to chemical stimuli and humidity differences. As compared with that of normal flies, the olfactory response of aristapedia ( ss a ) is somewhat less intense, the humidity reaction being somewhat stronger. These mutants do not give the characteristic responses evoked by thermal stimuli both in normal flies and antennaless phenotypes. The outstanding histological differences between the structure of the antenna of aristapedia and that of wild-type flies is the absence of the pit organ. It thus seems that the pit organ is not essential to the olfactory response and plays no essential part in the humidity response. Since antennaless ( A 0 ) responds normally to thermal stimuli, none of the putative sense organs of the antennae are essential to the recognition of temperature differences, and since aristapedia ( ss a ) responds more weakly to chemical stimuli than do normal flies, the pit organs may well be long-distance chemoreceptors. What is more certain is that either the peg-like organs or the cones on the surface of the distal joint of the antennae or both are chemoreceptors. The same remark is equally applicable to the perception of humidity differences. Experiments here recorded do not justify the identification of the function of one or other type of sensilla with one or the other type of receptivity. While it is unjustifiable to exclude the possibility that short-distance chemical stimuli play a part in the attraction of flies of opposite sex, it appears that the main role of chemoreceptivity in relation to the mating behaviour of D. melanogaster is to ensure the aggregation of flies of both sexes in situations where food is available and sexual congress can be evoked by other forms of stimulation.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Taeyeop Park ◽  
Huazhen Chen ◽  
Hee-Yong Kim

Abstract Background Neuroinflammation is a widely accepted underlying condition for various pathological processes in the brain. In a recent study, synaptamide, an endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), was identified as a specific ligand to orphan adhesion G-protein-coupled receptor 110 (GPR110, ADGRF1). Synaptamide has been shown to suppress lipopolysaccharide (LPS)-induced neuroinflammation in mice, but involvement of GPR110 in this process has not been established. In this study, we investigated the possible immune regulatory role of GPR110 in mediating the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. Methods For in vitro studies, we assessed the role of GPR110 in synaptamide effects on LPS-induced inflammatory responses in adult primary mouse microglia, immortalized murine microglial cells (BV2), primary neutrophil, and peritoneal macrophage by using quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) as well as neutrophil migration and ROS production assays. To evaluate in vivo effects, wild-type (WT) and GPR110 knock-out (KO) mice were injected with LPS intraperitoneally (i.p.) or TNF intravenously (i.v.) followed by synaptamide (i.p.), and expression of proinflammatory mediators was measured by qPCR, ELISA, and western blot analysis. Activated microglia in the brain and NF-kB activation in cells were examined microscopically after immunostaining for Iba-1 and RelA, respectively. Results Intraperitoneal (i.p.) administration of LPS increased TNF and IL-1β in the blood and induced pro-inflammatory cytokine expression in the brain. Subsequent i.p. injection of the GPR110 ligand synaptamide significantly reduced LPS-induced inflammatory responses in wild-type (WT) but not in GPR110 knock-out (KO) mice. In cultured microglia, synaptamide increased cAMP and inhibited LPS-induced proinflammatory cytokine expression by inhibiting the translocation of NF-κB subunit RelA into the nucleus. These effects were abolished by blocking synaptamide binding to GPR110 using an N-terminal targeting antibody. GPR110 expression was found to be high in neutrophils and macrophages where synaptamide also caused a GPR110-dependent increase in cAMP and inhibition of LPS-induced pro-inflammatory mediator expression. Intravenous injection of TNF, a pro-inflammatory cytokine that increases in the circulation after LPS treatment, elicited inflammatory responses in the brain which were dampened by the subsequent injection (i.p.) of synaptamide in a GPR110-dependent manner. Conclusion Our study demonstrates the immune-regulatory function of GPR110 in both brain and periphery, collectively contributing to the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. We suggest GPR110 activation as a novel therapeutic strategy to ameliorate inflammation in the brain as well as periphery.


2020 ◽  
Vol 21 (15) ◽  
pp. 5515
Author(s):  
Kento Fujii ◽  
Yasuko Yamamoto ◽  
Yoko Mizutani ◽  
Kuniaki Saito ◽  
Mariko Seishima

Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme known to suppress immune responses, and several reports have showed that it is associated with psoriasis. IDO2 is an isoform of IDO1, recently identified as a catalytic enzyme in the tryptophan-kynurenine pathway, which is expressed in dendritic cells and monocytes. The expression of IDO2 in immune cells suggests that IDO2 may contribute to immune functions. However, the role of IDO2 in the pathogenesis of psoriasis remains unclear. In this study, to elucidate the role of IDO2 in psoriasis, we assessed imiquimod (IMQ)-induced psoriasis-like dermatitis in IDO2 knockout (KO) mice. Skin inflammation, evaluated by scoring erythema, scaling, and ear thickness, was significantly worse in the IDO2 KO mice than in the wild-type (WT) mice. The mRNA expression levels of TNF-α, IL-23p19, and IL-17A, key cytokines involved in the development of psoriasis, were also increased in the IDO2 KO mice. Furthermore, immunohistochemistry revealed that the number of Ki67-positive cells in the epidermis and CD4-, CD8-, and IL-17-positive lymphocytes infiltrating the dermis were significantly increased in the IDO2 KO mice. These results suggest that IDO2 might decrease IL-17 expression, thereby resulting in the suppression of skin inflammation in IMQ-induced psoriasis-like dermatitis.


Sign in / Sign up

Export Citation Format

Share Document