Human acrosome biogenesis: immunodetection of proacrosin in primary spermatocytes and of its partitioning pattern during meiosis

Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 779-788
Author(s):  
D. Escalier ◽  
J.M. Gallo ◽  
M. Albert ◽  
G. Meduri ◽  
D. Bermudez ◽  
...  

Proacrosin biosynthesis timing during human spermatogenesis has been studied using the monoclonal antibody 4D4 (mAb 4D4). Frozen and paraffin-embedded sections of testicular biopsies were labelled by standard indirect immunofluorescence and avidin-biotin immunoperoxidase procedures. The labelling specificity was checked by immunochemistry assays on unrelated tissues and by western blotting of testis extracts showing that only the 50–55 × 10(3) Mr proacrosin was recognized by mAb 4D4. Proacrosin was first observed in the Golgi region of midpachytene primary spermatocytes. In late pachytene primary spermatocytes, proacrosin was observed in two regions located at opposite nuclear poles. During the subsequent steps of the first meiotic division, the two bodies containing proacrosin were located: (i) on opposite sides of the equatorial plate during metaphase; (ii) along the microtubular spindle during anaphase; and (iii) close to each chromosomal aggregate during telophase. Two bodies containing proacrosin were still observed in interphasic secondary spermatocytes. The single labelled area observed in early spermatids was found to increase considerably in size during spermiogenesis. Anomalies of proacrosin scattering were observed in patients with Golgi complex partitioning failure. These data reveal proacrosin biosynthesis during diploid and haploid phases of human spermatogenesis and the proacrosin partitioning pattern during meiosis.

2021 ◽  
Vol 22 (4) ◽  
pp. 2141
Author(s):  
Srinu Tumpara ◽  
Elena Korenbaum ◽  
Mark Kühnel ◽  
Danny Jonigk ◽  
Beata Olejnicka ◽  
...  

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.


2021 ◽  
Vol 22 (6) ◽  
pp. 3166
Author(s):  
Jwala Priyadarsini Sivaccumar ◽  
Antonio Leonardi ◽  
Emanuela Iaccarino ◽  
Giusy Corvino ◽  
Luca Sanguigno ◽  
...  

Background: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb’s epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. Methods: We generated a mAb against PRAME immunizing mice with PRAME fragment 161–415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. Results: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202–212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. Conclusions: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody’s epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.


2020 ◽  
Vol 23 (3) ◽  
pp. 665-672
Author(s):  
Giang Huong Ta ◽  
Huy Quoc Nguyen ◽  
Quan Dang Nguyen

Introduction: CD45 is a common marker of leukocytes. Anti-human CD45 monoclonal antibody (MAb) has been used widely in diagnosing and monitoring hematologic diseases. The aim of this study was to generate an anti-human CD45 MAb, which can be used in research and diagnosis. Methods: Recombinant human CD45RO antigen was expressed from E. coli BL21 (DE3), purified and analyzed by SDS-PAGE and Western blotting. The purified CD45RO antigen was used to immunize Balb/c mice. Spleen cells from immunized mouse were collected and fused with P3X63Ag8.653 myeloma cells to form hybridoma. Anti-CD45 antibody-secreting capacity of hybridoma clones was evaluated by ELISA assay. Anti-CD45 MAb from the culture supernatant of the chosen hybridoma clone was purified by affinity chromatography. The MAb was characterized the biochemical characteristics and biological activity. Results: Recombinant human CD45RO antigen was expressed and purified from E.coli BL21 (DE3). Injection of purified CD45RO antigen provoked the immune response in Balb/c mice. Hybridoma clones were generated successfully by the fusion of spleen cells from the selected immunized-mouse and myeloma cells. Among these hybridoma clones, one with the highest yield of MAb production was identified. The isotype of the anti-CD45 MAb created in this work is IgG2b, while its the light chain is kappa (k) type. The affinity of this MAb with CD45RO antigen is high with Kd value at the picomolar level. The anti-CD45 MAb can interact with CD45 naturally expressed on the surface of Jurkat cells in Western blotting and fluorescent immuno-staining assay. Conclusion: We have developed successfully an anti-human CD45 MAb using hybridoma technology, which can recognize CD45 in ELISA, Western blotting, and fluorescent immuno-staining analysis. Although further investigations are necessary, obviously, our anti-human CD45 MAb is potential for research and diagnosis applications.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1633-1643 ◽  
Author(s):  
Donald MacGlashan ◽  
Jane McKenzie-White ◽  
Kristine Chichester ◽  
Bruce S. Bochner ◽  
Frances M. Davis ◽  
...  

Abstract In vivo studies suggested the possibility of an IgE-dependent regulation of high-affinity (FcRI) IgE receptor expression on basophils. The current studies extend these observations to in vitro cultures of human basophils. Incubation of basophils for 3 to 4 weeks resulted in a slow dissociation of IgE antibody, during which time FcRI expression decreased, as measured by flow cytometry using the anti-FcRIα monoclonal antibody, 22E7, or by measuring FcRIα mass by Western blotting of whole-cell lysates. Culture of basophils with IgE resulted in upregulation of FcRIα expression by both flow cytometry and Western blotting of whole-cell lysates. Upregulation followed a linear time course during 2 weeks of culture. The relative increase in FcRIα density depended on the starting density; with starting densities of FcRIα of 10,000 to 170,000 per basophil, the upregulation varied 20- to 1.1-fold, respectively. Upregulation occurred in high-purity basophils, was not influenced by IgG at concentrations up to 1 mg/mL, and was inhibited by dimeric IgE. Heat-inactivated IgE was less effective and the monoclonal antibody CGP51901 that prevents IgE binding to FcRIα blocked the ability of IgE to induce upregulation. The dose-response curve for IgE-induced upregulation had an effective concentration50 of 230 ng/mL. Although the receptor through which IgE induces this upregulation is not yet known, several characteristics suggest that the upregulation is mediated by IgE interacting through FcRIα itself.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qian Qian ◽  
Changping Wu ◽  
Jianping Chen ◽  
Weibing Wang

Background. Despite the large-scale clinical application of programmed death-ligand 1 (PD-L1) monoclonal antibody, reduction in its clinical response rate has become a gradual problem. As such, use of PD-L1 monoclonal antibody in combination with other anticarcinoma drugs has been the main strategy in improving its efficacy. Interleukin 10 (IL10) is a recognized inflammatory and immunosuppressive factor. Previous studies have suggested that there is a link between PD-L1 and IL10. Objective. This study was aimed at clarifying the relationship between PD-L1 and IL10 in liver hepatocellular carcinoma (LIHC) and whether IL10 enhances the efficacy of PD-L1 inhibitor. Methods. Expression levels of PD-L1 and IL10 in carcinoma and adjacent tissues were tested by immunochemistry, Western blotting, and RT-PCR. Survival duration and follow-up data of each patient were recorded. LIHC cell lines Bel7405 and MHCC 97-H were used for in vitro experiments. Exogenous IL10 and anti-IL10 were added to cell supernatant. Expression level of PD-L1 in the LIHC cell lines was determined using Western blotting and ELISA. CCK8 and transwell assays were adopted to examine the effect of PD-L1 combined with IL10 on proliferation, invasion, and metastasis of LIHC cells. Results. The survival period of patients with low expression of IL10 was longer than that of patients with high expression (P=0.01). Overexpression of PD-L1 increased the IL10 and Met levels in LIHC tissues and cell lines. IL10 downregulated the expression level of PD-L1 and enhanced the efficacy of crizotinib via the Met signaling pathway in the LIHC cells. Conclusions. A combination of IL10 and PD-L1 inhibitor holds great promise as an effective treatment for LIHC.


1999 ◽  
Vol 144 (6) ◽  
pp. 1135-1149 ◽  
Author(s):  
Mark S. Ladinsky ◽  
David N. Mastronarde ◽  
J. Richard McIntosh ◽  
Kathryn E. Howell ◽  
L. Andrew Staehelin

Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at ∼7-nm resolution. The reconstruction shown here (∼1 × 1 × 4 μm3) contains two stacks of seven cisternae separated by a noncompact region across which bridges connect some cisternae at equivalent levels, but none at nonequivalent levels. The rest of the noncompact region is filled with both vesicles and polymorphic membranous elements. All cisternae are fenestrated and display coated buds. They all have about the same surface area, but they differ in volume by as much as 50%. The trans-most cisterna produces exclusively clathrin-coated buds, whereas the others display only nonclathrin coated buds. This finding challenges traditional views of where sorting occurs within the Golgi complex. Tubules with budding profiles extend from the margins of both cis and trans cisternae. They pass beyond neighboring cisternae, suggesting that these tubules contribute to traffic to and/or from the Golgi. Vesicle-filled “wells” open to both the cis and lateral sides of the stacks. The stacks of cisternae are positioned between two types of ER, cis and trans. The cis ER lies adjacent to the ER-Golgi intermediate compartment, which consists of discrete polymorphic membranous elements layered in front of the cis-most Golgi cisterna. The extensive trans ER forms close contacts with the two trans-most cisternae; this apposition may permit direct transfer of lipids between ER and Golgi membranes. Within 0.2 μm of the cisternae studied, there are 394 vesicles (8 clathrin coated, 190 nonclathrin coated, and 196 noncoated), indicating considerable vesicular traffic in this Golgi region. Our data place structural constraints on models of trafficking to, through, and from the Golgi complex.


2003 ◽  
Vol 77 (2) ◽  
pp. 1368-1381 ◽  
Author(s):  
Iñigo J. Salanueva ◽  
Reyes R. Novoa ◽  
Pilar Cabezas ◽  
Carmen López-Iglesias ◽  
José L. Carrascosa ◽  
...  

ABSTRACT The Golgi apparatus is the assembly site for a number of complex enveloped viruses. Using high-preservation methods for electron microscopy, we have detected two previously unknown maturation steps in the morphogenesis of Bunyamwera virus in BHK-21 cells. The first maturation takes place inside the Golgi stack, where annular immature particles transform into dense, compact structures. Megalomicin, a drug that disrupts the trans side of the Golgi complex, reversibly blocks transformation, showing that a functional trans-Golgi is needed for maturation. The second structural change seems to take place during the egress of viral particles from cells, when a coat of round-shaped spikes becomes evident. A fourth viral assembly was detected in infected cells: rigid tubular structures assemble in the Golgi region early in infection and frequently connect with mitochondria. In Vero cells, the virus induces an early and spectacular fragmentation of intracellular membranes while productive infection progresses. Assembly occurs in fragmented Golgi stacks and generates tubular structures, as well as the three spherical viral forms. These results, together with our previous studies with nonrelated viruses, show that the Golgi complex contains key factors for the structural transformation of a number of enveloped viruses that assemble intracellularly.


1984 ◽  
Vol 99 (6) ◽  
pp. 2200-2210 ◽  
Author(s):  
Y Chicheportiche ◽  
P Vassalli ◽  
A M Tartakoff

BALB/c mice were repeatedly immunized with a galactosyl transferase-rich microsomal fraction of rat myeloma cells. Spleen cells were subsequently fused with Sp2/0 mouse myeloma cells, the resulting hybridomas were cloned, and their secreted Ig was screened for reactivity with antigens belonging to the Golgi complex. One such monoclonal antibody, 6F4C5, gave especially intense immunofluorescent staining of the Golgi area of myeloma cells and fibroblasts. It recognized two proteins bands on immunoblots of gel-fractionated cell lysates: a major one with an estimated Mr of 54,000 and a minor one at 86,000. Both proteins were concentrated in microsomal fractions isolated at low ionic strength. They were hydrophilic judging from partitioning of a Triton X-114 cell lysate. Both were cytoplasmically oriented as demonstrated by protease and high KCl treatments of postmitochondrial supernatants and microsomal fractions. Neither was retained by columns of insolubilized wheat germ agglutinin or concanavalin A, which suggests that they are not glycoproteins. Their more detailed location in the Golgi complex was studied by immunoelectron microscopy, using a saponin permeabilization procedure and peroxidase-conjugated reagents. The observed staining was restricted to two or three cisternae in the medial part of the stack. Nevertheless, differential centrifugation experiments indicated that the two antigens may be recovered in distinct subcellular fractions: this may be related to the unexpected observation that rather low salt concentrations strip the antigens from microsomal fraction.


2000 ◽  
Vol 74 (22) ◽  
pp. 10535-10550 ◽  
Author(s):  
María M. Lorenzo ◽  
Inmaculada Galindo ◽  
Gareth Griffiths ◽  
Rafael Blasco

ABSTRACT The extracellular enveloped virus (EEV) form of vaccinia virus is bound by an envelope which is acquired by wrapping of intracellular virus particles with cytoplasmic vesicles containing trans-Golgi network markers. Six virus-encoded proteins have been reported as components of the EEV envelope. Of these, four proteins (A33R, A34R, A56R, and B5R) are glycoproteins, one (A36R) is a nonglycosylated transmembrane protein, and one (F13L) is a palmitylated peripheral membrane protein. During infection, these proteins localize to the Golgi complex, where they are incorporated into infectious virus that is then transported and released into the extracellular medium. We have investigated the fates of these proteins after expressing them individually in the absence of vaccinia infection, using a Semliki Forest virus expression system. Significant amounts of proteins A33R and A56R efficiently reached the cell surface, suggesting that they do not contain retention signals for intracellular compartments. In contrast, proteins A34R and F13L were retained intracellularly but showed distributions different from that of the normal infection. Protein A36R was partially retained intracellularly, decorating both the Golgi complex and structures associated with actin fibers. A36R was also transported to the plasma membrane, where it accumulated at the tips of cell projections. Protein B5R was efficiently targeted to the Golgi region. A green fluorescent protein fusion with the last 42 C-terminal amino acids of B5R was sufficient to target the chimeric protein to the Golgi region. However, B5R-deficient vaccinia virus showed a normal localization pattern for other EEV envelope proteins. These results point to the transmembrane or cytosolic domain of B5R protein as one, but not the only, determinant of the retention of EEV proteins in the wrapping compartment.


Sign in / Sign up

Export Citation Format

Share Document