Muscle pattern diversification in Drosophila is determined by the autonomous function of homeotic genes in the embryonic mesoderm

Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 755-768 ◽  
Author(s):  
A.M. Michelson

Muscle diversification in the Drosophila embryo is manifest in a stereotyped array of myofibers that exhibit distinct segment-specific patterns. Here it is shown that the homeotic genes of the Bithorax complex control the identities of abdominal somatic muscles and their precursors by functioning directly in cells of the mesoderm. Whereas Ultrabithorax (Ubx) and abdominal-A (abd-A) have equivalent functions in promoting the formation of particular muscle precursors in the anterior abdominal segments, Abdominal-B (Abd-B) suppresses the development of these same myogenic cells in the posterior region of the abdomen. When expressed in the same mesodermal cells, however, either UBX or ABD-A can override the inhibitory influence of ABD-B, suggesting that these factors may compete in the regulation of common downstream genes. Furthermore, targeted ectopic expression of Ubx or abd-A indicates that these homeotic genes influence muscle cell fates by autonomous action in mesodermal cells. Muscle identity also appears to be sensitive to the level of UBX in myogenic precursors. Finally, these experiments reveal that homeotic cues specific to both the mesoderm and the ectoderm cooperate to specify the pattern of muscle attachment sites.

Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4525-4535 ◽  
Author(s):  
S. Knirr ◽  
N. Azpiazu ◽  
M. Frasch

In the Drosophila embryo, a distinct class of myoblasts, designated as muscle founders, prefigures the mature pattern of somatic body wall muscles. Each founder cell appears to be instrumental in generating a single larval muscle with a defined identity. The NK homeobox gene S59 was the first of a growing number of proposed ‘identity genes’ that have been found to be expressed in stereotyped patterns in specific subsets of muscle founders and their progenitor cells and are thought to control their developmental fates. In the present study, we describe the effects of gain- and loss-of-function experiments with S59. We find that a null mutation in the gene encoding S59, which we have named slouch (slou), disrupts the development of all muscles that are derived from S59-expressing founder cells. The observed phenotypes upon mutation and ectopic expression of slouch include transformations of founder cell fates, thus confirming that slouch (S59) functions as an identity gene in muscle development. These fate transformations occur between sibling founder cells as well as between neighboring founders that are not lineage-related. In the latter case, we show that slouch (S59) activity is required cell-autonomously to repress the expression of ladybird (lb) homeobox genes, thereby preventing specification along the lb pathway. Together, these findings provide new insights into the regulatory interactions that establish the somatic muscle pattern.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2607-2615 ◽  
Author(s):  
M.D. Martin-Bermudo

Changes in the extracellular matrix (ECM) govern the differentiation of many cell types during embryogenesis. Integrins are cell matrix receptors that play a major role in cell-ECM adhesion and in transmitting signals from the ECM inside the cell to regulate gene expression. In this paper, it is shown that the PS integrins are required at the muscle attachment sites of the Drosophila embryo to regulate tendon cell differentiation. The analysis of the requirements of the individual alpha subunits, alphaPS1 and alphaPS2, demonstrates that both PS1 and PS2 integrins are involved in this process. In the absence of PS integrin function, the expression of tendon cell-specific genes such as stripe and beta1 tubulin is not maintained. In addition, embryos lacking the PS integrins also exhibit reduced levels of activated MAPK. This reduction is probably due to a downregulation of the Epidermal Growth Factor receptor (Egfr) pathway, since an activated form of the Egfr can rescue the phenotype of embryos mutant for the PS integrins. Furthermore, the levels of the Egfr ligand Vein at the muscle attachment sites are reduced in PS mutant embryos. Altogether, these results lead to a model in which integrin-mediated adhesion plays a role in regulating tendon cell differentiation by modulating the activity of the Egfr pathway at the level of its ligand Vein.


Cell ◽  
1992 ◽  
Vol 71 (3) ◽  
pp. 437-450 ◽  
Author(s):  
Gilles Vachon ◽  
Barbara Cohen ◽  
Christine Pfeifle ◽  
M.Elaine McGuffin ◽  
Juan Botas ◽  
...  

Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 339-352 ◽  
Author(s):  
W. Zeng ◽  
D.J. Andrew ◽  
L.D. Mathies ◽  
M.A. Horner ◽  
M.P. Scott

The transcription factors encoded by homeotic genes determine cell fates during development. Each homeotic protein causes cells to follow a distinct pathway, presumably by differentially regulating downstream ‘target’ genes. The homeodomain, the DNA-binding part of homeotic proteins, is necessary for conferring the specificity of each homeotic protein's action. The two Drosophila homeotic proteins encoded by Antennapedia and Sex combs reduced determine cell fates in the epidermis and internal tissues of the posterior head and thorax. Genes encoding chimeric Antp/Scr proteins were introduced into flies and their effects on morphology and target gene regulation observed. We find that the N terminus of the homeodomain is critical for determining the specific effects of these homeotic proteins in vivo, but other parts of the proteins have some influence as well. The N-terminal part of the homeodomain has been observed, in crystal structures and in NMR studies in solution, to contact the minor groove of the DNA. The different effects of Antennapedia and Sex combs reduced proteins in vivo may depend on differences in DNA binding, protein-protein interactions, or both.


Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3605-3619 ◽  
Author(s):  
J.R. Manak ◽  
L.D. Mathies ◽  
M.P. Scott

The clustered homeotic genes encode transcription factors that regulate pattern formation in all animals, conferring cell fates by coordinating the activities of downstream ‘target’ genes. In the Drosophila midgut, the Ultrabithorax (Ubx) protein activates and the abdominalA (abd-A) protein represses transcription of the decapentaplegic (dpp) gene, which encodes a secreted signalling protein of the TGF beta class. We have identified an 813 bp dpp enhancer which is capable of driving expression of a lacZ gene in a correct pattern in the embryonic midgut. The enhancer is activated ectopically in the visceral mesoderm by ubiquitous expression of Ubx or Antennapedia but not by Sex combs reduced protein. Ectopic expression of abd-A represses the enhancer. Deletion analysis reveals regions required for repression and activation. A 419 bp subfragment of the 813 bp fragment also drives reporter gene expression in an appropriate pattern, albeit more weakly. Evolutionary sequence conservation suggests other factors work with homeotic proteins to regulate dpp. A candidate cofactor, the extradenticle protein, binds to the dpp enhancer in close proximity to homeotic protein binding sites. Mutation of either this site or another conserved motif compromises enhancer function. A 45 bp fragment of DNA from within the enhancer correctly responds to both UBX and ABD-A in a largely tissue-specific manner, thus representing the smallest in vivo homeotic response element (HOMRE) identified to date.


2013 ◽  
Author(s):  
Ksenija Djukic ◽  
Petar Milovanovic ◽  
Michael Hahn ◽  
Bjoern Busse ◽  
Michael Amling ◽  
...  

1994 ◽  
Vol 14 (6) ◽  
pp. 4145-4154
Author(s):  
P Armand ◽  
A C Knapp ◽  
A J Hirsch ◽  
E F Wieschaus ◽  
M D Cole

We have found that a novel basic helix-loop-helix (bHLH) protein is expressed almost exclusively in the epidermal attachments sites for the somatic muscles of Drosophila melanogaster. A Drosophila cDNA library was screened with radioactively labeled E12 protein, which can dimerize with many HLH proteins. One clone that emerged from this screen encoded a previously unknown protein of 360 amino acids, named delilah, that contains both basic and HLH domains, similar to a group of cellular transcription factors implicated in cell type determination. Delilah protein formed heterodimers with E12 that bind to the muscle creatine kinase promoter. In situ hybridization with the delilah cDNA localized the expression of the gene to a subset of cells in the epidermis which form a distinct pattern involving both the segmental boundaries and intrasegmental clusters. This pattern was coincident with the known sites of attachment of the somatic muscles to tendon cells in the epidermis. delilah expression persists in snail mutant embryos which lack mesoderm, indicating that expression of the gene was not induced by attachment of the underlying muscles. The similarity of this gene to other bHLH genes suggests that it plays an important role in the differentiation of epidermal cells into muscle attachment sites.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 807-822 ◽  
Author(s):  
K.A. Wharton ◽  
R.P. Ray ◽  
W.M. Gelbart

decapentaplegic (dpp) is a zygotically expressed gene encoding a TGF-beta-related ligand that is necessary for dorsal-ventral patterning in the Drosophila embryo. We show here that dpp is an integral part of a gradient that specifies many different cell fates via intercellular signalling. There is a graded requirement for dpp activity in the early embryo: high levels of dpp activity specify the amnioserosa, while progressively lower levels specify dorsal and lateral ectoderm. This potential for dpp to specify cell fate is highly dosage sensitive. In the wild-type embryo, increasing the gene dosage of dpp can shift cell fates along the dorsal-ventral axis. Furthermore, in mutant embryos, in which only a subset of the dorsal-ventral pattern elements are represented, increasing the gene dosage of dpp can specifically transform those pattern elements into more dorsal ones. We present evidence that the zygotic dpp gradient and the maternal dorsal gradient specify distinct, non-overlapping domains of the dorsal-ventral pattern.


Development ◽  
1988 ◽  
Vol 104 (4) ◽  
pp. 713-720 ◽  
Author(s):  
A. Busturia ◽  
G. Morata

The morphological patterns in the adult cuticle of Drosophila are determined principally by the homeotic genes of the bithorax and Antennapedia complexes. We find that many of these genes become indiscriminately active in the adult epidermis when the Pc gene is eliminated. By using the Pc3 mutation and various BX-C mutant combinations, we have generated clones of imaginal cells possessing different combinations of active homeotic genes. We find that, in the absence of BX-C genes, Pc- clones develop prothoracic patterns; this is probably due to the activity of Sex combs reduced which overrules Antennapedia. Adding contributions of Ultrabithorax, abdominal-A and Abdominal-B results in thoracic or abdominal patterns. We have established a hierarchical order among these genes: Antp less than Scr less than Ubx less than abd-A less than Abd-B. In addition, we show that the engrailed gene is ectopically active in Pc- imaginal cells.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3355-3362 ◽  
Author(s):  
L. Gabay ◽  
H. Scholz ◽  
M. Golembo ◽  
A. Klaes ◽  
B.Z. Shilo ◽  
...  

The induction of different cell fates along the dorsoventral axis of the Drosophila embryo requires a graded activity of the EGF receptor tyrosine kinase (DER). Here we have identified primary and secondary target genes of DER, which mediate the determination of discrete ventral cell fates. High levels of DER activation in the ventralmost cells trigger expression of the transcription factors encoded by ventral nervous system defective (vnd) and pointed P1 (pntPl). Concomitant with the induction of pntP1, high levels of DER activity lead to inactivation of the Yan protein, a transcriptional repressor of Pointed-target genes. These two antagonizing transcription factors subsequently control the expression of secondary target genes such as otd, argos and tartan. The simultaneous effects of the DER pathway on pntP1 induction and Yan inactivation may contribute to the definition of the border of the ventralmost cell fates.


Sign in / Sign up

Export Citation Format

Share Document