Regulation of BMP7 expression during kidney development

Development ◽  
1998 ◽  
Vol 125 (17) ◽  
pp. 3473-3482 ◽  
Author(s):  
R.E. Godin ◽  
N.T. Takaesu ◽  
E.J. Robertson ◽  
A.T. Dudley

Members of the Bone Morphogenetic Protein (BMP) family exhibit overlapping and dynamic expression patterns throughout embryogenesis. However, little is known about the upstream regulators of these important signaling molecules. There is some evidence that BMP signaling may be autoregulative as demonstrated for BMP4 during tooth development. Analysis of BMP7 expression during kidney development, in conjunction with studies analyzing the effect of recombinant BMP7 on isolated kidney mesenchyme, suggest that a similar mechanism may operate for BMP7. We have generated a beta-gal-expressing reporter allele at the BMP7 locus to closely monitor expression of BMP7 during embryonic kidney development. In contrast to other studies, our analysis of BMP7/lacZ homozygous mutant embryos, shows that BMP7 expression is not subject to autoregulation in any tissue. In addition, we have used this reporter allele to analyze the expression of BMP7 in response to several known survival factors (EGF, bFGF) and inducers of metanephric mesenchyme, including the ureteric bud, spinal cord and LiCl. These studies show that treatment of isolated mesenchyme with EGF or bFGF allows survival of the mesenchyme but neither factor is sufficient to maintain BMP7 expression in this population of cells. Rather, BMP7 expression in the mesenchyme is contingent on an inductive signal. Thus, the reporter allele provides a convenient marker for the induced mesenchyme. Interestingly LiCl has been shown to activate the Wnt signaling pathway, suggesting that BMP7 expression in the mesenchyme is regulated by a Wnt signal. Treatment of whole kidneys with sodium chlorate to disrupt proteoglycan synthesis results in the loss of BMP7 expression in the mesenchyme whereas expression in the epithelial components of the kidney are unaffected. Heterologous recombinations of ureteric bud with either limb or lung mesenchyme demonstrate that expression of BMP7 is maintained in this epithelial structure. Taken together, these data indicate that BMP7 expression in the epithelial components of the kidney is not dependent on cell-cell or cell-ECM interactions with the metanephric mesenchyme. By contrast, BMP7 expression in the metanephric mesenchyme is dependent on proteoglycans and possibly Wnt signaling.

2007 ◽  
Vol 293 (2) ◽  
pp. F494-F500 ◽  
Author(s):  
Diana M. Iglesias ◽  
Pierre-Alain Hueber ◽  
LeeLee Chu ◽  
Robert Campbell ◽  
Anne-Marie Patenaude ◽  
...  

The canonical WNT signaling pathway plays a crucial role in patterning of the embryo during development, but little is known about the specific developmental events which are under WNT control. To understand more about how the WNT pathway orchestrates mammalian organogenesis, we studied the canonical β-catenin-mediated WNT signaling pathway in kidneys of mice bearing a β-catenin-responsive TCF/βGal reporter transgene. In metanephric kidney, intense canonical WNT signaling was evident in epithelia of the branching ureteric bud and in nephrogenic mesenchyme during its transition into renal tubules. WNT signaling activity is rapidly downregulated in maturing nephrons and becomes undetectable in postnatal kidney. Sites of TCF/βGal activity are in proximity to the known sites of renal WNT2b and WNT4 expression, and these WNTs stimulate TCF reporter activity in kidney cell lines derived from ureteric bud and metanephric mesenchyme lineages. When fetal kidney explants from HoxB7/GFP mice were exposed to the canonical WNT signaling pathway inhibitor, Dickkopf-1, arborization of the ureteric bud was significantly reduced. We conclude that restricted zones of intense canonical WNT signaling drive branching nephrogenesis in fetal kidney.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3627-3637 ◽  
Author(s):  
A. Kispert ◽  
S. Vainio ◽  
L. Shen ◽  
D.H. Rowitch ◽  
A.P. McMahon

Development of the metanephric kidney requires the concerted interaction of two tissues, the epithelium of the ureteric duct and the metanephric mesenchyme. Signals from the ureter induce the metanephric mesenchyme to condense and proliferate around the ureter tip, reciprocal signals from the mesenchyme induce the ureter tip to grow and to branch. Wnt genes encode secreted glycoproteins, which are candidate mediators of these signaling events. We have identified three Wnt genes with specific, non-overlapping expression patterns in the metanephric kidney, Wnt-4, Wnt-7b and Wnt-11. Wnt-4 is expressed in the condensing mesenchyme and the comma- and S-shaped bodies. Wnt-7b is expressed in the collecting duct epithelium from 13.5 days post coitum onward. Wnt-1l is first expressed in the nephric duct adjacent to the metanephric blastema prior to the outgrowth of the ureteric bud. Wnt-l1 expression in Danforth's short-tail mice suggests that signaling from the mesenchyme may regulate Wnt-ll activation. During metanephric development, Wnt-11 expression is confined to the tips of the branching ureter. Maintenance of this expression is independent of Wnt-4 signaling and mature mesenchymal elements in the kidney. Moreover, Wnt-ll expression is maintained in recombinants between ureter and lung mesenchyme suggesting that branching morphogenesis and maintenance of Wnt-ll expression are independent of metanephric mesenchyme-specific factors. Interference with proteoglycan synthesis leads to loss of Wnt-ll expression in the ureter tip. We suggest that Wnt-11 acts as an autocrine factor within the ureter epithelium and that its expression is regulated at least in part by proteoglycans.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1507-1517 ◽  
Author(s):  
J. Davies ◽  
M. Lyon ◽  
J. Gallagher ◽  
D. Garrod

Kidney epithelia have separate origins; collecting ducts develop by ureteric bud growth and arborisation, nephrons by induced mesenchyme-epithelium transition. Both express sulphated glycosaminoglycans (GAGs) which are strikingly upregulated during nephron differentiation. However, sodium chlorate, an inhibitor of GAG sulphation, and the GAG-degrading enzymes heparitinase plus chondroitinase, did not prevent nephron development. In contrast, ureteric bud growth and branching were reversibly inhibited by the above reagents, the inhibition correlating quantitatively with sulphated GAG deprivation caused by a range of chlorate concentrations. Growth and branching could be independently restored during GAG deprivation by hepatocyte growth factor and phorbol-12-myristate acetate (PMA) respectively. Together these signalling effectors stimulated both branch initiation and growth. Thus growth and morphogenesis of ureteric bud involve distinct signalling pathways both regulated by GAGs.


Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 547-554 ◽  
Author(s):  
J. Qiao ◽  
R. Uzzo ◽  
T. Obara-Ishihara ◽  
L. Degenstein ◽  
E. Fuchs ◽  
...  

The importance of proportioning kidney size to body volume was established by clinical studies which demonstrated that in-born defecits of nephron number predispose the kidney to disease. As the kidney develops, the expanding ureteric bud or renal collecting system induces surrounding metanephric mesenchyme to proliferate and differentiate into nephrons. Thus, it is likely that nephron number is related to ureteric bud growth. The expression patterns of mRNAs encoding Fibroblast Growth Factor-7 (FGF-7) and its high affinity receptor suggested that FGF-7 signaling may play a role in regulating ureteric bud growth. To test this hypothesis we examined kidneys from FGF-7-null and wild-type mice. Results of these studies demonstrate that the developing ureteric bud and mature collecting system of FGF-7-null kidneys is markedly smaller than wild type. Furthermore, morphometric analyses indicate that mature FGF-7-null kidneys have 30+/−6% fewer nephrons than wild-type kidneys. In vitro experiments demonstrate that elevated levels of FGF-7 augment ureteric bud growth and increase the number of nephrons that form in rodent metanephric kidney organ cultures. Collectively, these results demonstrate that FGF-7 levels modulate the extent of ureteric bud growth during development and the number of nephrons that eventually form in the kidney.


2019 ◽  
Vol 98 (5) ◽  
pp. 580-588 ◽  
Author(s):  
Y. Xiong ◽  
Y. Fang ◽  
Y. Qian ◽  
Y. Liu ◽  
X. Yang ◽  
...  

The Wnt ligands display varied spatiotemporal expression in the epithelium and mesenchyme in the developing tooth. Thus far, the actions of these differentially expressed Wnt ligands on tooth development are not clear. Shh expression specifies the odontogenic epithelium during initiation and is consistently restricted to the dental epithelium during tooth development. In this study, we inactivate Wntless ( Wls), the key regulator for Wnt trafficking, by Shh-Cre to investigate how the Wnt ligands produced in the dental epithelium lineage act on tooth development. We find that conditional knockout of Wls by Shh-Cre leads to defective ameloblast and odontoblast differentiation. WlsShh-Cre teeth display reduced canonical Wnt signaling activity in the inner enamel epithelium and the underlying mesenchyme at the early bell stage, as exhibited by target gene expression and BAT-gal staining. The expression of Wnt5a and Wnt10b is not changed in WlsShh-Cre teeth. By contrast, Wnt10a expression is significantly increased in response to epithelial Wls deficiency. In addition, the expression of Hedgehog signaling pathway components Shh, Gli1, and Patched1 was greatly decreased in WlsShh-Cre teeth. Epithelial Wls loss of function in Shh lineage also leads to aberrant cell proliferation in dental epithelium and mesenchyme at embryonic day 16.5; however, the cell apoptosis is unaffected. Moreover, we find that Decorin and Col1a1, the key markers for odontoblast differentiation that are downregulated in WlsShh-Cre teeth, act as direct downstream targets of the canonical Wnt signaling pathway by chromatin immunoprecipitation analysis. Additionally, Decorin and Col1a1 expression can be increased by lithium chloride (LiCl) treatment in the in vitro tooth explants. Taken together, our results suggest that the spatial expression of Wnt ligands within the dental epithelial lineage regulates the differentiation of tooth structures in later stages.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ren-qiang Yu ◽  
Min Wang ◽  
Shan-yu Jiang ◽  
Ying-hui Zhang ◽  
Xiao-yu Zhou ◽  
...  

Necrotizing enterocolitis (NEC) is the leading cause of death due to gastrointestinal disease in preterm infants. The role of miRNAs in NEC is still unknown. The objective of this study was to identify differentially expressed (DE) miRNAs in rats with NEC and analyze their possible roles. In this study, a NEC rat model was established using Sprague-Dawley rat pups. Small RNA sequencing was used to analyze the miRNA expression profiles in the NEC and control rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify target mRNAs for the DE miRNAs and to explore their potential roles. The DE miRNAs were verified by real-time quantitative PCR (RT-qPCR). The status of intestinal injury and the elevated levels of inflammatory cytokines in the NEC group confirmed that the NEC model was successfully established. The 16 miRNAs were found to be differentially expressed between the NEC group and the control group of rats. Bioinformatics analysis indicated that the parental genes of the DE miRNAs were predominantly implicated in the phosphorylation, cell migration, and protein phosphorylation processes. Moreover, the DE miRNAs were mainly found to be involved in the pathways of axon guidance, endocytosis, and focal adhesion, as well as in the Wnt signaling pathway, which is related to colitis. The expression patterns of the candidate miRNAs (rno-miR-27a-5p and rno-miR-187-3p), as assessed by RT-qPCR, were in accordance with the expression patterns obtained by miRNA-sequencing. The miRNA/mRNA/pathway network revealed that rno-miR-27a-5p and rno-miR-187-3p might be involved in NEC via the Wnt signaling pathway. We found an altered miRNA expression pattern in rats with NEC. We hypothesize that rno-miR-27a-5p and rno-miR-187-3p might mediate the NEC pathophysiological processes via the Wnt signaling pathway.


1999 ◽  
Vol 277 (4) ◽  
pp. F650-F663 ◽  
Author(s):  
Anna Pavlova ◽  
Robert O. Stuart ◽  
Martin Pohl ◽  
Sanjay K. Nigam

Branching morphogenesis of the ureteric bud in response to unknown signals from the metanephric mesenchyme gives rise to the urinary collecting system and, via inductive signals from the ureteric bud, to recruitment of nephrons from undifferentiated mesenchyme. An established cell culture model for this process employs cells of ureteric bud origin (UB) cultured in extracellular matrix and stimulated with conditioned media (BSN-CM) from a metanephric mesenchymal cell line (H. Sakurai, E. J. Barros, T. Tsukamoto, J. Barasch, and S. K. Nigam. Proc. Natl. Acad. Sci. USA 94: 6279–6284, 1997.). In the presence of BSN-CM, the UB cells form branching tubular structures reminiscent of the branching ureteric bud. The pattern of gene regulation in this model of branching morphogenesis of the kidney collecting system was investigated using high-density cDNA arrays. Software and analytical methods were developed for the quantification and clustering of genes. With the use of a computational method termed “vector analysis,” genes were clustered according to the direction and magnitude of differential expression in n-dimensional log-space. Changes in gene expression in response to the BSN-CM consisted primarily of differential expression of transcription factors with previously described roles in morphogenesis, downregulation of pro-apoptotic genes accompanied by upregulation of anti-apoptotic genes, and upregulation of a small group of secreted products including growth factors, cytokines, and extracellular proteinases. Changes in expression are discussed in the context of a general model for epithelial branching morphogenesis. In addition, the cDNA arrays were used to survey expression of epithelial markers and secreted factors in UB and BSN cells, confirming the largely epithelial character of the former and largely mesenchymal character of the later. Specific morphologies (cellular processes, branching multicellular cords, etc.) were shown to correlate with the expression of different, but overlapping, genomic subsets, suggesting differences in morphogenetic mechanisms at these various steps in the evolution of branching tubules.


2002 ◽  
Vol 22 (5) ◽  
pp. 1474-1487 ◽  
Author(s):  
Ulf Dahl ◽  
Anders Sjödin ◽  
Lionel Larue ◽  
Glenn L. Radice ◽  
Stefan Cajander ◽  
...  

ABSTRACT The distinct expression of R-cadherin in the induced aggregating metanephric mesenchyme suggests that it may regulate the mesenchymal-epithelial transition during kidney development. To address whether R-cadherin is required for kidney ontogeny, R-cadherin-deficient mice were generated. These mice appeared to be healthy and were fertile, demonstrating that R-cadherin is not essential for embryogenesis. The only kidney phenotype of adult mutant animals was the appearance of dilated proximal tubules, which was associated with an accumulation of large intracellular vacuoles. Morphological analysis of nephrogenesis in R-cadherin −/− mice in vivo and in vitro revealed defects in the development of both ureteric bud-derived cells and metanephric mesenchyme-derived cells. First, the morphology and organization of the proximal parts of the ureteric bud epithelium were altered. Interestingly, these morphological changes correlated with an increased rate of apoptosis and were further supported by perturbed branching and patterning of the ureteric bud epithelium during in vitro differentiation. Second, during in vitro studies of mesenchymal-epithelial conversion, significantly fewer epithelial structures developed from R-cadherin −/− kidneys than from wild-type kidneys. These data suggest that R-cadherin is functionally involved in the differentiation of both mesenchymal and epithelial components during metanephric kidney development. Finally, to investigate whether the redundant expression of other classic cadherins expressed in the kidney could explain the rather mild kidney defects in R-cadherin-deficient mice, we intercrossed R-cadherin −/− mice with cadherin-6−/− , P-cadherin −/−, and N-cadherin +/− mice. Surprisingly, however, in none of the compound knockout strains was kidney development affected to a greater extent than within the individual cadherin knockout strains.


Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3105-3115 ◽  
Author(s):  
Ryuichi Nishinakamura ◽  
Yuko Matsumoto ◽  
Kazuki Nakao ◽  
Kenji Nakamura ◽  
Akira Sato ◽  
...  

SALL1 is a mammalian homolog of the Drosophilaregion-specific homeotic gene spalt (sal); heterozygous mutations in SALL1 in humans lead to Townes-Brocks syndrome. We have isolated a mouse homolog of SALL1 (Sall1) and found that mice deficient in Sall1 die in the perinatal period and that kidney agenesis or severe dysgenesis are present. Sall1 is expressed in the metanephric mesenchyme surrounding ureteric bud; homozygous deletion ofSall1 results in an incomplete ureteric bud outgrowth, a failure of tubule formation in the mesenchyme and an apoptosis of the mesenchyme. This phenotype is likely to be primarily caused by the absence of the inductive signal from the ureter, as the Sall1-deficient mesenchyme is competent with respect to epithelial differentiation. Sall1 is therefore essential for ureteric bud invasion, the initial key step for metanephros development.


Sign in / Sign up

Export Citation Format

Share Document