Sequence-specific protein interaction with a transcriptional enhancer involved in the autoregulated expression of cAMP receptor 1 in Dictyostelium

Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3689-3698
Author(s):  
X. Mu ◽  
B. Lee ◽  
J.M. Louis ◽  
A.R. Kimmel

Major stages of Dictyostelium development are regulated by secreted, extracellular cAMP through activation of a serpentine receptor family. During early development, oscillations of extracellular cAMP mobilize cells for aggregation; later, continuous exposure to higher extracellular cAMP concentrations downregulates early gene expression and promotes cytodifferentiation and cell-specific gene expression. The cAMP receptor 1 gene CAR1 has two promoters that are differentially responsive to these extracellular cAMP stimuli. The early CAR1 promoter is induced by nM pulses of cAMP, which in turn are generated by CAR1-dependent activation of adenylyl cyclase (AC). Higher, non-fluctuating concentrations of cAMP will adapt this AC stimulus-response, repress the activated early promoter and induce the dormant late promoter. We now identify a critical element of the pulse-induced CAR1 promoter and a nuclear factor with sequence-specific interaction. Mutation of four nucleotides within the element prevents both in vitro protein binding and in vivo expression of an otherwise fully active early CAR1 promoter and multimerization of the wild-type, but not mutant, sequence will confer cAMP regulation to a quiescent heterologous promoter. These cis and trans elements, thus, constitute a part of the molecular response to the cAMP transmembrane signal cascade that regulates early development of Dictyostelium.

Author(s):  
D E Goszczynski ◽  
P S Tinetti ◽  
Y H Choi ◽  
P J Ross ◽  
K Hinrichs

Abstract Embryonic genome activation and dosage compensation are major genetic events in early development. Combined analysis of single embryo RNA-seq data and parental genome sequencing was used to evaluate parental contributions to early development and investigate X-chromosome dynamics. In addition, we evaluated dimorphism in gene expression between male and female embryos. Evaluation of parent-specific gene expression revealed a minor increase in paternal expression at the 4-cell stage that increased at the 8-cell stage. We also detected eight genes with allelic expression bias that may have an important role in early development, notably NANOGNB. The main actor in X-chromosome inactivation, XIST, was significantly upregulated at the 8-cell, morula, and blastocyst stages in female embryos, with high expression at the latter. Sexual dimorphism in gene expression was identified at all stages, with strong representation of the X-chromosome in females from the 16-cell to the blastocyst stage. Female embryos showed biparental X-chromosome expression at all stages after the 4-cell stage, demonstrating the absence of imprinted X-inactivation at the embryo level. The analysis of gene dosage showed incomplete dosage compensation (0.5 < X:A < 1) in MII oocytes and embryos up to the 4-cell stage, an increase of the X:A ratio at the 16-cell and morula stages after genome activation, and a decrease of the X:A ratio at the blastocyst stage, which might be associated with the beginning of X-chromosome inactivation. This study represents the first critical analysis of parent- and sex-specific gene expression in early equine embryos produced in vitro.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1997-2002
Author(s):  
R.D. Soede ◽  
R.H. Insall ◽  
P.N. Devreotes ◽  
P. Schaap

Extracellular cAMP induces expression of several classes of developmentally regulated genes in Dictyostelium. Four highly homologous surface cAMP receptors (cARs) were identified earlier, but involvement of specific cARs in gene regulation has not been clarified. Cells lacking the chemotactic receptor, cAR1, neither aggregate nor express developmentally regulated genes. Expression of aggregative genes is in wild-type cells induced by nanomolar cAMP pulses and repressed by persistent micromolar cAMP stimuli, which induce expression of prespore and prestalk-enriched genes during the postaggregative stages of development. We show here that in cell lines carrying a cAR1 gene disruption, nanomolar pulses cannot induce aggregative gene expression. Remarkably, micromolar cAMP can induce expression of aggregative genes in car1- cells as well as expression of prespore and prestalk-enriched genes, and furthermore restores their ability to form normal slugs and fruiting bodies. These data indicate that cAR1 mediates aggregative but not postaggregative gene expression and morphogenesis, and suggest that after gene disruption, its function is partially taken over by a lower affinity receptor that is not subjected to desensitization. The absence of another early cAMP receptor, cAR3, does not affect development. However, in a car1-/car3- double mutant, cAMP stimulation cannot restore any developmental gene expression, indicating that cAR3 may have substituted for cAR1 in car1- cell lines.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Diptendu Mukherjee ◽  
Ben Jerry Gonzales ◽  
Reut Ashwal-Fluss ◽  
Hagit Turm ◽  
Maya Groysman ◽  
...  

Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking.


2020 ◽  
Author(s):  
Diptendu Mukherjee ◽  
Ben Jerry Gonzales ◽  
Reut Ashwal-Fluss ◽  
Hagit Turm ◽  
Maya Groysman ◽  
...  

AbstractDrug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking.Impact statementVLS ensembles are dynamically recruited by cocaine experiences to mediate cocaine reward.


2006 ◽  
Vol 17 (10) ◽  
pp. 4543-4550 ◽  
Author(s):  
Parvin Bolourani ◽  
George B. Spiegelman ◽  
Gerald Weeks

On starvation, the cellular slime mold Dictyostelium discoideum initiates a program of development leading to formation of multicellular structures. The initial cell aggregation requires chemotaxis to cyclic AMP (cAMP) and relay of the cAMP signal by the activation of adenylyl cyclase (ACA), and it has been shown previously that the Ras protein RasC is involved in both processes. Insertional inactivation of the rasG gene resulted in delayed aggregation and a partial inhibition of early gene expression, suggesting that RasG also has a role in early development. Both chemotaxis and ACA activation were reduced in the rasG− cells, but the effect on chemotaxis was more pronounced. When the responses of rasG− cells to cAMP were compared with the responses of rasC− and rasC−rasG− strains, generated in otherwise isogenic backgrounds, these studies revealed that signal transduction through RasG is more important in chemotaxis and early gene expression, but that signal transduction through RasC is more important in ACA activation. Because the loss of either of the two Ras proteins alone did not result in a total loss of signal output down either of the branches of the cAMP signal-response pathway, there appears to be some overlap of function.


2012 ◽  
Author(s):  
Christopher B. Sturdy ◽  
Marc T. Avey ◽  
Laurie L. Bloomfield ◽  
Julie E. Elie ◽  
Todd M. Freeberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document