scholarly journals Role of Xrx1 in Xenopus eye and anterior brain development

Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2451-2460 ◽  
Author(s):  
M. Andreazzoli ◽  
G. Gestri ◽  
D. Angeloni ◽  
E. Menna ◽  
G. Barsacchi

The anteriormost part of the neural plate is fated to give rise to the retina and anterior brain regions. In Xenopus, this territory is initially included within the expression domain of the bicoid-class homeobox gene Xotx2 but very soon, at the beginning of neurulation, it becomes devoid of Xotx2 transcripts in spatiotemporal concomitance with the transcriptional activation of the paired-like homeobox gene Xrx1. By use of gain- and loss-of-function approaches, we have studied the role played by Xrx1 in the anterior neural plate and its interactions with other anterior homeobox genes. We find that, at early neurula stage Xrx1 is able to repress Xotx2 expression, thus first defining the retina-diencephalon territory in the anterior neural plate. Overexpression studies indicate that Xrx1 possesses a proliferative activity that is coupled with the specification of anterior fate. Expression of a Xrx1 dominant repressor construct (Xrx1-EnR) results in a severe impairment of eye and anterior brain development. Analysis of several brain markers in early Xrx1-EnR-injected embryos reveals that anterior deletions are preceded by a reduction of anterior gene expression domains in the neural plate. Accordingly, expression of anterior markers is abolished or decreased in animal caps coinjected with the neural inducer chordin and the Xrx1-EnR construct. The lack of expansion of mid-hindbrain markers, and the increase of apoptosis in the anterior neural plate after Xrx1-EnR injection, indicate that anterior deletions result from an early loss of anterior neural plate territories rather than posteriorization of the neuroectoderm. Altogether, these data suggest that Xrx1 plays a role in assigning anterior and proliferative properties to the rostralmost part of the neural plate, thus being required for eye and anterior brain development.

Development ◽  
1997 ◽  
Vol 124 (15) ◽  
pp. 2923-2934 ◽  
Author(s):  
K.M. Wassarman ◽  
M. Lewandoski ◽  
K. Campbell ◽  
A.L. Joyner ◽  
J.L. Rubenstein ◽  
...  

Analysis of mouse embryos homozygous for a loss-of-function allele of Gbx2 demonstrates that this homeobox gene is required for normal development of the mid/hindbrain region. Gbx2 function appears to be necessary at the neural plate stage for the correct specification and normal proliferation or survival of anterior hindbrain precursors. It is also required to maintain normal patterns of expression at the mid/hindbrain boundary of Fgf8 and Wnt1, genes that encode signaling molecules thought to be key components of the mid/hindbrain (isthmic) organizer. In the absence of Gbx2 function, isthmic nuclei, the cerebellum, motor nerve V, and other derivatives of rhombomeres 1–3 fail to form. Additionally, the posterior midbrain in the mutant embryos appears to be extended caudally and displays abnormalities in anterior/posterior patterning. The failure of anterior hindbrain development is presumably due to the loss of Gbx2 function in the precursors of the anterior hindbrain. However, since Gbx2 expression is not detected in the midbrain it seems likely that the defects in midbrain anterior/posterior patterning result from an abnormal isthmic signaling center. These data provide genetic evidence for a link between patterning of the anterior hindbrain and the establishment of the mid/hindbrain organizer, and identify Gbx2 as a gene required for these processes to occur normally.


2021 ◽  
Author(s):  
Christopher J. Playfoot ◽  
Julien Duc ◽  
Shaoline Sheppard ◽  
Sagane Dind ◽  
Alexandre Coudray ◽  
...  

Transposable elements (TEs) account for more than 50% of the human genome and many have been co-opted throughout evolution to provide regulatory functions for gene expression networks. Several lines of evidence suggest that these networks are fine-tuned by the largest family of TE controllers, the KRAB-containing zinc finger proteins (KZFPs). One tissue permissive for TE transcriptional activation (termed “transposcription”) is the adult human brain, however comprehensive studies on the extent of this process and its potential contribution to human brain development are lacking. To elucidate the spatiotemporal transposcriptome of the developing human brain, we have analyzed two independent RNA-seq data sets encompassing 16 brain regions from eight weeks postconception into adulthood. We reveal a distinct KZFP:TE transcriptional profile defining the late prenatal to early postnatal transition, and the spatiotemporal and cell type–specific activation of TE-derived alternative promoters driving the expression of neurogenesis-associated genes. Long-read sequencing confirmed these TE-driven isoforms as significant contributors to neurogenic transcripts. We also show experimentally that a co-opted antisense L2 element drives temporal protein relocalization away from the endoplasmic reticulum, suggestive of novel TE dependent protein function in primate evolution. This work highlights the widespread dynamic nature of the spatiotemporal KZFP:TE transcriptome and its importance throughout TE mediated genome innovation and neurotypical human brain development. To facilitate interactive exploration of these spatiotemporal gene and TE expression dynamics, we provide the “Brain TExplorer” web application freely accessible for the community.


2020 ◽  
Author(s):  
Christopher J. Playfoot ◽  
Julien Duc ◽  
Shaoline Sheppard ◽  
Sagane Dind ◽  
Alexandre Coudray ◽  
...  

AbstractTransposable elements (TEs) constitute 50% of the human genome and many have been co-opted throughout human evolution due to gain of advantageous regulatory functions controlling gene expression networks. Several lines of evidence suggest these networks can be fine-tuned by the largest family of TE controllers, the KRAB-containing zinc finger proteins (KZFPs). One tissue permissive for TE transcriptional activation (termed ‘transposcription’) is the adult human brain, however comprehensive studies on the extent of this process and its potential contribution to human brain development are lacking.In order to elucidate the spatiotemporal transposcriptome of the developing human brain, we have analysed two independent RNA-seq datasets encompassing 16 distinct brain regions from eight weeks post-conception into adulthood. We reveal an anti-correlated, KZFP:TE transcriptional profile defining the late prenatal to early postnatal transition, and the spatiotemporal and cell type specific activation of TE-derived alternative promoters driving the expression of neurogenesis-associated genes. We also demonstrate experimentally that a co-opted antisense L2 element drives temporal protein re-localisation away from the endoplasmic reticulum, suggestive of novel TE dependent protein function in primate evolution. This work highlights the widespread dynamic nature of the spatiotemporal KZFP:TE transcriptome and its potential importance throughout neurotypical human brain development.


Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 4889-4900 ◽  
Author(s):  
C. Bourguignon ◽  
J. Li ◽  
N. Papalopulu

Neuronal differentiation in the vertebrate nervous system is temporally and spatially controlled by mechanisms which are largely unknown. Here we investigate the role of XBF-1, an anterior neural plate-specific winged helix transcription factor, in controlling the pattern of neurogenesis in Xenopus ectoderm. We show that, in the anterior neural plate of normal embryos, prospective neurogenesis is positioned at the anterior boundary of the XBF-1 expression domain. By misexpressing XBF-1 in the posterior neural plate we show that a high dose of XBF-1 has a dual effect; it suppresses endogenous neuronal differentiation in high expressing cells and induces ectopic neuronal differentiation in adjacent cells. In contrast, a low dose of XBF-1 does not suppress but instead, expands the domain of neuronal differentiation in the lateral and ventral sides of the embryo. XBF-1 regulates the expression of XSox3, X-ngnr-1, X-Myt-1 and X-Δ-1 suggesting that it acts early in the cascade leading to neuronal differentiation. A fusion of XBF-1 to a strong repressor domain (EnR) mimics most of the XBF-1 effects suggesting that the wild type XBF-1 is a transcriptional repressor. However, fusion of XBF-1 to a strong activation domain (E1A) specifically suppresses neuronal differentiation suggesting that XBF-1 may also work as a transcriptional activator. Based on these findings, we propose that XBF-1 is involved in positioning neuronal differentiation by virtue of its concentration dependent, dual activity, as a suppressor and an activator of neurogenesis.


Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 2075-2085 ◽  
Author(s):  
A.G. Bang ◽  
N. Papalopulu ◽  
C. Kintner ◽  
M.D. Goulding

Pax-3 is a paired-type homeobox gene that is specifically expressed in the dorsal and posterior neural tube. We have investigated inductive interactions that initiate Pax-3 transcript expression in the early neural plate. We present several lines of evidence that support a model where Pax-3 expression is initiated by signals that posteriorize the neuraxis, and then secondarily restricted dorsally in response to dorsal-ventral patterning signals. First, in chick and Xenopus gastrulae the onset of Pax-3 expression occurs in regions fated to become posterior CNS. Second, Hensen's node and posterior non-axial mesoderm which underlies the neural plate induce Pax-3 expression when combined with presumptive anterior neural plate explants. In contrast, presumptive anterior neural plate explants are not competent to express Pax-3 in response to dorsalizing signals from epidermal-ectoderm. Third, in a heterospecies explant recombinant assay with Xenopus animal caps (ectoderm) as a responding tissue, late, but not early, Hensen's node induces Pax-3 expression. Chick posterior non-axial mesoderm also induces Pax-3, provided that the animal caps are neuralized by treatment with noggin. Finally we show that the putative posteriorizing factors, retinoic acid and bFGF, induce Pax-3 in neuralized animal caps. However, blocking experiments with a dominant-inhibitory FGF receptor and a dominant-inhibitory retinoic acid receptor suggest that Pax-3 inductive activities arising from Hensen's node and posterior non-axial mesoderm do not strictly depend on FGF or retinoic acid.


Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 845-856 ◽  
Author(s):  
M. Rhinn ◽  
A. Dierich ◽  
W. Shawlot ◽  
R.R. Behringer ◽  
M. Le Meur ◽  
...  

The homeobox gene Otx2 is a mouse cognate of the Drosophila orthodenticle gene, which is required for development of the brain, rostral to rhombomere three. We have investigated the mechanisms involved in this neural function and specifically the requirement for Otx2 in the visceral endoderm and the neuroectoderm using chimeric analysis in mice and explant recombination assay. Analyses of chimeric embryos composed of more than 90% of Otx2−/− ES cells identified an essential function for Otx2 in the visceral endoderm for induction of the forebrain and midbrain. The chimeric studies also demonstrated that an anterior neural plate can form without expressing Otx2. However, in the absence of Otx2, expression of important regulatory genes, such as Hesx1/Rpx, Six3, Pax2, Wnt1 and En, fail to be initiated or maintained in the neural plate. Using explant-recombination assay, we could further demonstrate that Otx2 is required in the neuroectodem for expression of En. Altogether, these results demonstrate that Otx2 is first required in the visceral endoderm for the induction, and subsequently in the neuroectoderm for the specification of forebrain and midbrain territories.


Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 41-52 ◽  
Author(s):  
E. Hermesz ◽  
S. Mackem ◽  
K.A. Mahon

We have isolated a new murine homeobox gene, Rpx (for Rathke's pouch homeobox), that is dynamically expressed in the prospective cephalic region of the embryo during gastrulation. Early expression is seen in the anterior midline endoderm and prechordal plate precursor. Expression is subsequently activated in the overlying ectoderm of the cephalic neural plate, suggesting that inductive contact with Rpx-expressing mesendoderm is required for this expression. Subsequently, Rpx expression is extinguished in the mesendoderm while remaining in the prospective prosencephalic region of the neural plate ectoderm. Ultimately, transcripts become restricted to Rathke's pouch, the primordium of the pituitary, which is known to be derived from the most anterior ectoderm of the early embryo. Down regulation of Rpx in the pouch coincides with the differentiation of pituitary-specific cell types. Rpx is the earliest known marker for the pituitary primordium, suggestive of a role in the early determination or differentiation of the pituitary. Since Rpx is expressed so dynamically and so early in the anterior region of the embryo, and since its early expression domain is much more extensive than the region fated to form the pituitary, it is likely that Rpx is involved in the initial determination of the anterior (prechordal) region of the embryo.


1992 ◽  
Vol 152 (2) ◽  
pp. 373-382 ◽  
Author(s):  
A.G. Zaraisky ◽  
S.A. Lukyanov ◽  
O.L. Vasiliev ◽  
Y.V. Smirnov ◽  
A.V. Belyavsky ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 470
Author(s):  
Jeremy W. Prokop ◽  
Caleb P. Bupp ◽  
Austin Frisch ◽  
Stephanie M. Bilinovich ◽  
Daniel B. Campbell ◽  
...  

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


Sign in / Sign up

Export Citation Format

Share Document