Role for mRNA localization in translational activation but not spatial restriction of nanos RNA

Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 659-669 ◽  
Author(s):  
S.E. Bergsten ◽  
E.R. Gavis

Patterning of the anterior-posterior body axis during Drosophila development depends on the restriction of Nanos protein to the posterior of the early embryo. Synthesis of Nanos occurs only when maternally provided nanos RNA is localized to the posterior pole by a large, cis-acting signal in the nanos 3′ untranslated region (3′UTR); translation of unlocalized nanos RNA is repressed by a 90 nucleotide Translational Control Element (TCE), also in the 3′UTR. We now show quantitatively that the majority of nanos RNA in the embryo is not localized to the posterior pole but is distributed throughout the cytoplasm, indicating that translational repression is the primary mechanism for restricting production of Nanos protein to the posterior. Through an analysis of transgenes bearing multiple copies of nanos 3′UTR regulatory sequences, we provide evidence that localization of nanos RNA by components of the posteriorly localized germ plasm activates its translation by preventing interaction of nanos RNA with translational repressors. This mutually exclusive relationship between translational repression and RNA localization is mediated by a 180 nucleotide region of the nanos localization signal, containing the TCE. These studies suggest that the ability of RNA localization to direct wild-type body patterning also requires recognition of multiple, unique elements within the nanos localization signal by novel factors. Finally, we propose that differences in the efficiencies with which different RNAs are localized result from the use of temporally distinct localization pathways during oogenesis.

Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2791-2800 ◽  
Author(s):  
E.R. Gavis ◽  
L. Lunsford ◽  
S.E. Bergsten ◽  
R. Lehmann

Correct formation of the Drosophila body plan requires restriction of nanos activity to the posterior of the embryo. Spatial regulation of nanos is achieved by a combination of RNA localization and localization-dependent translation such that only posteriorly localized nanos RNA is translated. Cis-acting sequences that mediate both RNA localization and translational regulation lie within the nanos 3′ untranslated region. We have identified a discrete translational control element within the nanos 3′ untranslated region that acts independently of the localization signal to mediate translational repression of unlocalized nanos RNA. Both the translational regulatory function of the nanos 3′UTR and the sequence of the translational control element are conserved between D. melanogaster and D. virilis. Furthermore, we show that the RNA helicase Vasa, which is required for nanos RNA localization, also plays a critical role in promoting nanos translation. Our results specifically exclude models for translational regulation of nanos that rely on changes in polyadenylation.


Development ◽  
2001 ◽  
Vol 128 (3) ◽  
pp. 427-435 ◽  
Author(s):  
S. Evans Bergsten ◽  
T. Huang ◽  
S. Chatterjee ◽  
E.R. Gavis

Localization of nanos (nos) mRNA to the germ plasm at the posterior pole of the Drosophila embryo is essential to activate nos translation and thereby generate abdominal segments. nos RNA localization is mediated by a large cis-acting localization signal composed of multiple, partially redundant elements within the nos 3′ untranslated region. We identify a protein of approximately 75 kDa (p75) that interacts specifically with the nos +2′ localization signal element. We show that the function of this element can be delimited to a 41 nucleotide domain that is conserved between D. melanogaster and D. virilis, and confers near wild-type localization when present in three copies. Two small mutations within this domain eliminate both +2′ element localization function and p75 binding, consistent with a role for p75 in nos RNA localization. In the intact localization signal, the +2′ element collaborates with adjacent localization elements. We show that different +2′ element mutations not only abolish collaboration between the +2′ and adjacent +1 element but also produce long-range deleterious effects on localization signal function. Our results suggest that higher order structural interactions within the localization signal, which requires factors such as p75, are necessary for association of nos mRNA with the germ plasm.


Development ◽  
1997 ◽  
Vol 124 (3) ◽  
pp. 749-758 ◽  
Author(s):  
E.B. Goodwin ◽  
K. Hofstra ◽  
C.A. Hurney ◽  
S. Mango ◽  
J. Kimble

In Caenorhabditis elegans, the tra-2 sex-determining gene is regulated at the translational level by two 28 nt direct repeat elements (DREs) located in its 3′ untranslated region (3′UTR). DRF is a factor that binds the DREs and may be a trans-acting translational regulator of tra-2. Here we identify two genes that are required for the normal pattern of translational control. A newly identified gene, called laf-1, is required for translational repression by the tra-2 3′UTR. In addition, the sex-determining gene, tra-3, appears to promote female development by freeing tra-2 from laf-1 repression. Finally, we show that DRF activity correlates with translational repression of tra-2 during development and that tra-3 regulates DRF activity. We suggest that tra-3 may promote female development by releasing tra-2 from translation repression by laf-1 and that translational control is important for proper sex determination--both in the early embryo and during postembryonic development.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1775-1785 ◽  
Author(s):  
E.P. Robbie ◽  
M. Peterson ◽  
E. Amaya ◽  
T.J. Musci

Early frog embryogenesis depends on a maternal pool of mRNA to execute critical intercellular signalling events. FGF receptor-1, which is required for normal development, is stored as a stable, untranslated maternal mRNA transcript in the fully grown immature oocyte, but is translationally activated at meiotic maturation. We have identified a short cis-acting element in the FGF receptor 3′ untranslated region that inhibits translation of synthetic mRNA. This inhibitory element is sufficient to inhibit translation of heterologous reporter mRNA in the immature oocyte without changing RNA stability. Deletion of the poly(A) tract or polyadenylation signal sequences does not affect translational inhibition by this element. At meiotic maturation, we observe the reversal of translational repression mediated by the inhibitory element, mimicking that seen with endogenous maternal FGF receptor mRNA at meiosis. In addition, the activation of synthetic transcripts at maturation does not appear to require poly(A) lengthening. We also show that an oocyte cytoplasmic protein specifically binds the 3′ inhibitory element, suggesting that translational repression of Xenopus FGF receptor-1 maternal mRNA in the oocytes is mediated by RNA-protein interactions. These data describe a mechanism of translational control that appears to be independent of poly(A) changes.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1129-1138 ◽  
Author(s):  
Y.S. Lie ◽  
P.M. Macdonald

The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3′ untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3′ untranslated region.


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3325-3334 ◽  
Author(s):  
Ira E. Clark ◽  
Krista C. Dobi ◽  
Heather K. Duchow ◽  
Anna N. Vlasak ◽  
Elizabeth R. Gavis

Translational repression of maternal nanos (nos) mRNA by a cis-acting Translational Control Element (TCE) in the nos 3′UTR is critical for anterior-posterior patterning of the Drosophila embryo. We show, through ectopic expression experiments, that the nos TCE is capable of repressing gene expression at later stages of development in neuronal cells that regulate the molting cycle. Our results predict additional targets of TCE-mediated repression within the nervous system. They also suggest that mechanisms that regulate maternal mRNAs, like TCE-mediated repression, may function more widely during development to spatially or temporally control gene expression.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2737-2746 ◽  
Author(s):  
C. Rongo ◽  
E.R. Gavis ◽  
R. Lehmann

The site of oskar RNA and protein localization within the oocyte determines where in the embryo primordial germ cells form and where the abdomen develops. Initiation of oskar RNA localization requires the activity of several genes. We show that ovaries mutant for any of these genes lack Oskar protein. Using various transgenic constructs we have determined that sequences required for oskar RNA localization and translational repression map to the oskar 3′UTR, while sequences involved in the correct temporal activation of translation reside outside the oskar 3′UTR. Upon localization of oskar RNA and protein at the posterior pole, Oskar protein is required to maintain localization of oskar RNA throughout oogenesis. Stable anchoring of a transgenic reporter RNA at the posterior pole is disrupted by oskar nonsense mutations. We propose that initially localization of oskar RNA permits translation into Oskar protein and that subsequently Oskar protein regulates its own RNA localization through a positive feedback mechanism.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 2027-2037 ◽  
Author(s):  
P.J. Webster ◽  
J. Suen ◽  
P.M. Macdonald

The Drosophila melanogaster gene oskar is required for both posterior body patterning and germline formation in the early embryo; precisely how oskar functions is unknown. The oskar transcript is localized to the posterior pole of the developing oocyte, and oskar mRNA and protein are maintained at the pole through early embryogenesis. The posterior maintenance of oskar mRNA is dependent upon the presence of oskar protein. We have cloned and characterized the Drosophila virilis oskar homologue, virosk, and examined its activity as a transgene in Drosophila melanogaster flies. We find that the cis-acting mRNA localization signals are conserved, although the virosk transcript also transiently accumulates at novel intermediate sites. The virosk protein, however, shows substantial differences from oskar: while virosk is able to rescue body patterning in a D. melanogaster oskar- background, it is impaired in both mRNA maintenance and pole cell formation. Furthermore, virosk induces a dominant maternal-effect lethality when introduced into a wild-type background, and interferes with the posterior maintenance of the endogenous oskar transcript in early embryogenesis. Our data suggest that virosk protein is unable to anchor at the posterior pole of the early embryo; this defect could account for all of the characteristics of virosk mentioned above. Our observations support a model in which oskar protein functions both by nucleating the factors necessary for the activation of the posterior body patterning determinant and the germ cell determinant, and by anchoring these factors to the posterior pole of the embryo. While the posterior body patterning determinant need not be correctly localized to provide body patterning activity, the germ cell determinant may need to be highly concentrated adjacent to the cortex in order to direct pole cell formation.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 169-178 ◽  
Author(s):  
J. Kim-Ha ◽  
P.J. Webster ◽  
J.L. Smith ◽  
P.M. Macdonald

Pattern formation in the early development of many organisms relies on localized cytoplasmic proteins, which can be prelocalized as mRNAs. The Drosophila oskar gene, required both for posterior body patterning and germ cell determination, encodes one such mRNA. Localization of oskar mRNA is an elaborate process involving movement of the transcript first into the oocyte from adjacent interconnected nurse cells and then across the length of the oocyte to its posterior pole. We have mapped RNA regulatory elements that direct this localization. Using a hybrid lacZ/oskar mRNA, we identify several elements within the oskar 3′ untranslated region that affect different steps in the process: the early movement into the oocyte, accumulation at the anterior margin of the oocyte and finally localization to the posterior pole. This use of multiple cis-acting elements suggests that localization may be orchestrated in a combinatorial fashion, thereby allowing localized mRNAs with ultimately different destinations to employ common mechanisms for shared intermediate steps.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5013-5020 ◽  
Author(s):  
D. Gautreau ◽  
C.A. Cote ◽  
K.L. Mowry

Localization of mRNA has emerged as a fundamental mechanism for generating polarity during development. In vertebrates, one example of this phenomenon is Vg1 RNA, which is localized to the vegetal cortex of Xenopus oocytes. Vegetal localization of Vg1 RNA is directed by a 340-nt sequence element contained within its 3′ untranslated region. To investigate how such cis-acting elements function in the localization process, we have undertaken a detailed analysis of the precise sequence requirements for vegetal localization within the 340-nt localization element. We present evidence for considerable redundancy within the localization element and demonstrate that critical sequences lie at the ends of the element. Importantly, we show that a subelement from the 5′ end of the Vg1 localization element is, when duplicated, sufficient to direct vegetal localization. We suggest that the Vg1 localization element is composed of smaller, redundant sequence motifs and identify one such 6-nt motif as essential for localization. These results allow insight into what constitutes an RNA localization signal and how RNA sequence elements may act in the localization process.


Sign in / Sign up

Export Citation Format

Share Document