Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats

Development ◽  
2000 ◽  
Vol 127 (10) ◽  
pp. 2207-2217 ◽  
Author(s):  
J.Y. Song ◽  
T. Leung ◽  
L.K. Ehler ◽  
C. Wang ◽  
Z. Liu

In higher plants, meristem organization and cell division regulation are two fundamentally important and intimately related biological processes. Identifying and isolating regulatory genes in these processes is essential for understanding higher plant growth and development. We describe the molecular isolation and analyses of an Arabidopsis gene, TSO1, which regulates both of these processes. We previously showed that tso1 mutants displayed defects in cell division of floral meristem cells including partially formed cell walls, increased DNA content, and multinucleated cells (Liu, Z., Running, M. P. and Meyerowitz, E. M. (1997). Development 124, 665–672). Here, we characterize a second defect of tso1 in influorescence meristem development and show that the enlarged influorescence in tso1 mutants results from repeated division of one inflorescence meristem into two or more influorescence meristems. Using a map-based approach, we isolated the TSO1 gene and found that TSO1 encodes a protein with cysteine-rich repeats bearing similarity to Drosophila Enhancer of zeste and its plant homologs. In situ TSO1 mRNA expression pattern and the nuclear localization of TSO1-GFP are consistent with a regulatory role of TSO1 in floral meristem cell division and in influorescence meristem organization.

1992 ◽  
Vol 101 (1) ◽  
pp. 93-98 ◽  
Author(s):  
TAKASHI MURATA ◽  
MASAMITSU WADA

The preprophase band (PPB) of microtubules (MTs), which appears at the future site of cytokinesis prior to cell division in higher plant cells, disappears by metaphase. Recent studies have shown that displacement of the endoplasm from the PPB region by centrifugation delays the disappearance of the PPB. To study the role of the endoplasm in the cell cycle-specific disruption of the PPB, the filamentous protonemal cells of the fern Adiantum capilius-veneris L. were centrifuged twice so that the first centrifugation displaced the endoplasm from the site of the PPB and the second returned it to its original location. The endoplasm, including the nucleus of various stages of mitosis, could be returned by the second centrifugation to the original region of the PPB, which persists during mitosis in the centrifuged cells. When endoplasm with a prophase nucleus was returned to its original location, the PPB was not disrupted. When endoplasm with a prometa-phase telophase nucleus was similarly returned, the PPB was disrupted within 10 min of termination of centrifugation. In protonemal cells of Adiantum, a second PPB is often formed near the displaced nucleus after the first centrifugation. In cells in which the endoplasm was considered to have been returned to its original location at the prophase/prometaphase transition, the second PPB did not disappear even though the initial PPB was disrupted by the endoplasm. These results suggest that cell cycle-specific disruption of the PPB is regulated by some factor(s) in the endoplasm, which appears at prometaphase, i.e. the stage at which the PPB is disrupted in non-centrifuged cells.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4405-4419 ◽  
Author(s):  
R. Ruiz-Medrano ◽  
B. Xoconostle-Cazares ◽  
W.J. Lucas

Direct support for the concept that RNA molecules circulate throughout the plant, via the phloem, is provided through the characterisation of mRNA from phloem sap of mature pumpkin (Cucurbita maxima) leaves and stems. One of these mRNAs, CmNACP, is a member of the NAC domain gene family, some of whose members have been shown to be involved in apical meristem development. In situ RT-PCR analysis revealed the presence of CmNACP RNA in the companion cell-sieve element complex of leaf, stem and root phloem. Longitudinal and transverse sections showed continuity of transcript distribution between meristems and sieve elements of the protophloem, suggesting CmNACP mRNA transport over long distances and accumulation in vegetative, root and floral meristems. In situ hybridization studies conducted on CmNACP confirmed the results obtained using in situ RT-PCR. Phloem transport of CmNACP mRNA was proved directly by heterograft studies between pumpkin and cucumber plants, in which CmNACP transcripts were shown to accumulate in cucumber scion phloem and apical tissues. Similar experiments were conducted with 7 additional phloem-related transcripts. Collectively, these studies established the existence of a system for the delivery of specific mRNA transcripts from the body of the plant to the shoot apex. These findings provide insight into the presence of a novel mechanism likely used by higher plants to integrate developmental and physiological processes on a whole-plant basis.


2000 ◽  
Vol 10 (4) ◽  
pp. 471-487 ◽  
Author(s):  
J.M. Dinsdale ◽  
M.P. Dale ◽  
M. Kent

AbstractIn Britain,Lobelia urens(L.) (the heath lobelia) occurs in rough grassland, is rare and only found in southern England, where it is at the northern limit of its range. Emergence and survival ofL. urenswas investigated at six locations in two geographically distinct sites experiencing spring, autumn or no grazing in two consecutive years. Four factors were evaluated qualitatively, as a means of characterizing microhabitats for germination and survival: all permutations of higher plant cover, bryophytes, plant litter and surface depressions. The potential effect of adjacent plants on recruitment was also assessed using the nearest neighbour distance (NND). Grazing created depressions, removed plant litter and increased the proportion of sites with higher plant cover. It also resulted in a more open sward with higher NNDs. None of these changes stimulated recruitment. Instead, small increases in the frequency of some rare or very rare microhabitat types were vital in making grazed rough grassland more suitable for emergence. Reduced litter loads and a greater quantity of moss were two key responses. Overall, survival ofL. urenswas less than 1% and was particularly favoured by moss and an increase in NNDs. Shading from higher plants, with or without plant litter, decreased emergence, but the precise role of litter was complex and most probably related to its quantity. In an experimental seed bed, only empty depressions favoured emergence. The microhabitat relationships ofL. urenswere unusually consistent among locations and consecutive years.L. urensrequires high soil surface temperatures but also adequate water for large scale recruitment, and such conditions are encouraged by grazing. The particular problems of experimental design and statistical analysis of data from recruitment experiments are also discussed.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1567-1575 ◽  
Author(s):  
S.E. Clark ◽  
S.E. Jacobsen ◽  
J.Z. Levin ◽  
E.M. Meyerowitz

The CLAVATA (CLV1 and CLV3) and SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STH appear to have opposite functions: c1v1 and Clv3 mutants accumulate excess undifferentiated cells in the shoot and floral meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development. We have identified a weak allele of stm (stm-2) that reveals STM is not only required for the establish- ment of the shoot meristem, but is also required for the continued maintenance of undifferentiated cells in the shoot meristem and for proper proliferation of cells in the floral meristem. We have found evidence of genetic interactions between the CLV and STM loci. clv1 and c1v3 mutations partially suppressed the stm-1 and stm-2 phenotypes, and were capable of suppression in a dominant fashion. clv stm double mutants and plants homozygous for stm but heterozygous for clv, while still lacking an embryonic shoot meristem, exhibited greatly enhanced postembryonic shoot and floral meristem development. Although stm phenotypes are recessive, stm mutations dominantly suppressed clv homozygous and heterozygous phenotypes. These results indicate that the stm phenotype is sensitive to the levels of CLV activity, while the clv phenotype is sensitive to the level of STM activity. We propose that these genes play related but opposing roles in the regulation of cell division and/or cell differentiation in shoot and floral meristems.


2021 ◽  
Author(s):  
Ya Min ◽  
Stephanie J. Conway ◽  
Elena M. Kramer

ABSTRACTIn-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FM) produce floral organs, after which they undergo floral meristem termination (FMT), and precise control of organ initiation and FMT is crucial to reproductive success of any flowering plant. Using a live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results have uncovered distinct patterns of primordium initiation between stamens and staminodes compared to carpels, and provided insight into the process of FMT, which is discernable based on cell division dynamics preceding carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both an evolutionary and developmental context.


2000 ◽  
Vol 6 (S2) ◽  
pp. 296-297
Author(s):  
M.K. Kandasamy ◽  
R.B. Meagher

Plant organelles, including the dominant chloroplasts, migrate intracellularly on cytoplasmic strands (Fig. 1A-D). The chloroplasts in the leaf cells orient and redistribute in response to light to ensure maximum photosynthetic productivity. Their orderly distribution is also essential for proper transmission of organelle genome during cell proliferation. The movement and positioning of chloroplasts have been suggested to be mediated by the actin and tubulin-based cytoskeleton in green algae and higher plants. However, the actin structures controlling these processes have not been clearly delineated because of the difficulty in preserving and detecting the fine actin filaments in plant cells using conventional fixation methods and currently available antibodies.We investigated the role of the actin cytoskeleton in the regulation of chloroplast movement and positioning by studying: 1) the structural relationships of microfilaments and chloroplasts in leaf cells of Arabidopsis; and 2) effects of an anti-actin drug, Latrunculin B (LAT-B), on intracellular distribution of chloroplasts.


1999 ◽  
Vol 78 (10) ◽  
pp. 1617-1623 ◽  
Author(s):  
N. Tani-Ishii ◽  
A. Tsunoda ◽  
T. Teranaka ◽  
T. Umemoto

Bone resorption is regulated by the cytokines within marrow cells that mediate osteoclast formation and activation. IL-1 and TNF induce bone resorption by stimulating the production of osteoclast-like multinucleated cells and by increasing the bone-resorbing activity of formed osteoclasts. This study was designed to detect IL-1 and TNF in osteoclasts in vitro and to determine whether these cytokines up-regulate osteoclast differentiation and bone resorption. The production of IL-1α, -β, and TNFa, β in osteoclasts was examined immunohistochemically and by in situ hybridization. In the co-culture of C57BL/6N mouse bone marrow and MC3T3-G2/PA6 cells, a colony of osteoclasts formed, and IL-1α and TNFa were detected. However, IL-1β and TNF β were not detected. To investigate the role of IL-1α and TNFα from osteoclasts, we enumerated TRAP-positive cells and measured the resorption pit areas in the presence of antibodies against IL-1α and TNFα. The addition of antibodies against IL-1α and TNFα to the co-culture system decreased the number of TRAP-positive colonies at seven days after incubation (anti-IL-1α, 25.0 ± 2.3%; anti-TNFα, 41.7 ± 3.7%; anti-IL-1α + anti-TNFα, 40.5 ± 1.3%; and control, 100%), and the ratio of mononuclear to multinuclear cells had changed (anti-IL-1α, 90:10; anti-TNFα, 75:25; anti-IL-1α+ anti-TNFα, 88:12; and control, 60:40). The total pit areas per dentin slice also decreased with the addition of antibodies (anti-IL-1α, 28,828; anti-TNFα, 49,249; anti-IL-1α + anti-TNFα, 30,685; and control, 303,139 mm2). These results suggest that local production of IL-la and TNFα by osteoclasts is an important mechanism for regulating the osteoclast differentiation and bone resorptive process.


1978 ◽  
Vol 56 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Larry C. Fowke ◽  
Jeremy D. Pickett-Heaps

Cell division in Marehantia polymorpha and M. berteroana was examined with the electron microscope. Distinct preprophase bands of microtubules, typical of higher plants, were not observed. Most of the spindle microtubules in early prophase appeared to insert into polar MTOC's. The behaviour of the nuclear envelope, nucleolus, and chromosomes was typical of higher plant divisions. Cytokinesis was accomplished by centrifugal cell plate growth in a phragmoplast. Numerous coated vesicles were associated with the developing cell plate.


2021 ◽  
Author(s):  
Takahiro Numata ◽  
Kenji Sugita ◽  
Arifa Ahamed Rahman ◽  
Abidur Rahman

Meristem, which sustains a reservoir of niche cells at its apex, is the most functionally dynamic part in a plant body. The shaping of the meristem requires constant cell division and cell elongation, that are regulated by hormones and cell cytoskeletal components, actin. Although the roles of hormones in regulating meristem development have been extensively studied, the role of actin in this process is still elusive. Using the single and double mutants of the vegetative class actin, we demonstrate that ACT7 plays a primary role in regulating the root meristem development. In absence of ACT7, but not ACT8 and ACT2, cellular depolymerization of actin is observed. Consistently, act7 mutant shows reduced cell division, cell elongation and meristem length. Intracellular distribution and trafficking of auxin transport proteins in the actin mutants revealed that ACT7 specifically functions in root meristem to facilitate the trafficking of auxin efflux carriers PIN1 and PIN2, and consequently the transport of auxin. Compared with act7, act7act8 double mutant shows slightly enhanced phenotypic response and altered intracellular trafficking. The altered distribution of auxin in act7 and act7act8 affects the roots response to ethylene but not to cytokinin. Collectively, our results suggest that Arabidopsis root meristem development is primarily controlled through actin isovariant ACT7 mediated modulation of auxin-ethylene response.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document