Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis

Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3091-3100 ◽  
Author(s):  
A. Djiane ◽  
J. Riou ◽  
M. Umbhauer ◽  
J. Boucaut ◽  
D. Shi

Wnt signalling plays a crucial role in the control of morphogenetic movements. We describe the expression and functional analyses of frizzled 7 (Xfz7) during gastrulation in Xenopus. Low levels of Xfz7 transcripts are expressed maternally during cleavage stages; its zygotic expression strongly increases at the beginning of gastrulation and is predominantly localized to the presumptive neuroectoderm and deep cells of the involuting mesoderm. Overexpression of Xfz7 in the dorsal equatorial region affects the movements of convergent extension and delays mesodermal involution. It alters the correct localization, but not the expression, of mesodermal and neural markers. These effects can be rescued by extra-Xfz7, which is a secreted form of the receptor that also weakly inhibits convergent extension when overexpressed. This suggests that the wild-type and truncated receptors have opposing effects when coexpressed and that overexpression of Xfz7 causes an increased signalling activity. Consistent with this, Xfz7 biochemically and functionally interacts with Xwnt11. In addition, Dishevelled, but not (β)-catenin, synergizes with Xfz7 to affect convergent extension. Furthermore, overexpression of Xfz7 and Xwnt11 also affects convergent extension in activin-treated animal caps, and this can be efficiently reversed by coexpression of Cdc42(T17N), a dominant negative mutant of the small GTPase Cdc42 known as a key regulator of actin cytoskeleton. Conversely, Cdc42(G12V), a constitutively active mutant, rescues the effects of extra-Xfz7 on convergent extension in a dose-dependent manner. That both gain-of-function and loss-of-function of both frizzled and dishevelled produce the same phenotype has been well described in Drosophila tissue polarity. Therefore, our results suggest an endogenous role of Xfz7 in the regulation of convergent extension during gastrulation.

2001 ◽  
Vol 114 (8) ◽  
pp. 1579-1589 ◽  
Author(s):  
M. Reyes-Reyes ◽  
N. Mora ◽  
A. Zentella ◽  
C. Rosales

Integrin-mediated signals play an important but poorly understood role in regulating many leukocyte functions. In monocytes and monocytic leukemia cells, (β)1 integrin-mediated adhesion results in a strong induction of immediate-early genes that are important in inflammation. To investigate the signaling pathways from integrins in monocytic cells, THP-1 cells were stimulated via (β)1 integrins by binding to fibronectin and by crosslinking the integrins with specific monoclonal antibodies. The involvement of MAPK and PI 3-K on nuclear factor (κ)B (NF-(κ)B) activation was then analyzed. We found that integrins activated both NF-(κ)B and MAPK in a PI 3-K-dependent manner, as wortmannin and LY294002 blocked these responses. However, the specific MEK inhibitor PD98059 did not prevent integrin-mediated NF-(κ)B activation. In contrast, a dominant negative mutant of Rac completely prevented NF-(κ)B activation, but it did not affect MAPK activation. These results indicate that integrin signaling to NF-(κ)B is not mediated by the MAPK pathway, but rather by the small GTPase Rac. In addition, a dominant negative form of Ρ augmented NF-(κ)B activation and blocked MAPK activation, implying that these two pathways are in competition with each other. These data suggest that integrins activate different signaling pathways in monocytic cells. One uses PI 3-K and Rac to activate NF-(κ)B, while the other uses PI 3-K, MEK, and MAPK to activate other nuclear factors, such as Elk-1.


2004 ◽  
Vol 279 (44) ◽  
pp. 46122-46128 ◽  
Author(s):  
Indira Neeli ◽  
Zhimin Liu ◽  
Nagadhara Dronadula ◽  
Z. Alex Ma ◽  
Gadiparthi N. Rao

Platelet-derived growth factor-BB (PDGF-BB) is a potent motogen for vascular smooth muscle cells (VSMCs). To understand its motogenic signaling events, we have studied the role of the Janus-activated kinase/signal transducers and activators of transcription (Jak/STAT) pathway and cytosolic phospholipase A2(cPLA2). PDGF-BB stimulated tyrosine phosphorylation of Jak-2 and STAT-3 in a time-dependent manner in VSMCs. In addition, AG490 and Jak-2KEpRK5, a selective pharmacological inhibitor and a dominant negative mutant, respectively, of Jak-2, attenuated PDGF-BB-induced STAT-3 tyrosine phosphorylation and its DNA binding and reporter gene activities. PDGF-BB induced VSMC motility in a dose-dependent manner with a maximum effect at 10 ng/ml. Dominant negative mutant-dependent suppression of Jak-2 and STAT-3 blocked PDGF-BB-induced VSMC motility. PDGF-BB induced the expression of cPLA2in a Jak-2/STAT-3-dependent manner, and pharmacological inhibitors of cPLA2prevented PDGFBB-induced VSMC motility. Furthermore, either exogenous addition of arachidonic acid or forced expression of cPLA2rescued PDGF-BB-induced VSMC motility from inhibition by blockade of Jak-2 and STAT-3 activation. Together, these results for the first time show that PDGF-BB-induced VSMC motility requires activation of the Jak-2/STAT-3/cPLA2signaling axis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xin Zhou ◽  
Jennifer W Li ◽  
Zirong Chen ◽  
Wei Ni ◽  
Xuehui Li ◽  
...  

Lung cancer with loss-of-function of the LKB1 tumor suppressor is a common aggressive subgroup with no effective therapies. LKB1-deficiency induces constitutive activation of cAMP/CREB-mediated transcription by a family of three CREB-regulated transcription coactivators (CRTC1-3). However, the significance and mechanism of CRTC activation in promoting the aggressive phenotype of LKB1-null cancer remain poorly characterized. Here we observed overlapping CRTC expression patterns and mild growth phenotypes of individual CRTC-knockouts in lung cancer, suggesting functional redundancy of CRTC1-3. We consequently designed a dominant-negative mutant (dnCRTC) to block all three CRTCs to bind and co-activate CREB. Expression of dnCRTC efficiently inhibited the aberrantly activated cAMP/CREB-mediated oncogenic transcriptional program induced by LKB1-deficiency, and specifically blocked the growth of human and murine LKB1-inactivated lung cancer. Collectively, this study provides direct proof for an essential role of the CRTC-CREB activation in promoting the malignant phenotypes of LKB1-null lung cancer and proposes the CRTC-CREB interaction interface as a novel therapeutic target.


2021 ◽  
Vol 118 (7) ◽  
pp. e2017937118
Author(s):  
Silvia G. del Villar ◽  
Taylor L. Voelker ◽  
Maartje Westhoff ◽  
Gopireddy R. Reddy ◽  
Heather C. Spooner ◽  
...  

The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. β-Adrenergic receptor (βAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large “superclusters” wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. βAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered “emptying” of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, βAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented βAR-activated Ca2+ current augmentation. Moreover, βAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that βAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for βAR-regulation of cardiac CaV1.2.


1998 ◽  
Vol 330 (2) ◽  
pp. 1009-1014 ◽  
Author(s):  
Byung-Chul KIM ◽  
Jae-Hong KIM

Ceramide is an important regulatory molecule implicated in a variety of biological processes in response to stress and cytokines. To understand the signal transduction pathway of ceramide to the nucleus, in the present study, we examined whether C2-ceramide, a cell permeable ceramide, activates c-fos serum response element (SRE). Treatment of Rat-2 fibroblast cells with C2-ceramide caused the stimulation of c-fos SRE-dependent reporter gene activity in a dose- and time-dependent manner by transient transfection analysis. Next, we examined the role of Rho family GTPases in the ceramide-induced signalling to SRE activation. By reporter gene analysis following transient transfections with various plasmids expressing a dominant negative mutant form of Cdc42, Rac1 or RhoA, C2-ceramide-induced SRE activation was shown to be selectively repressed by pEXV-RacN17 encoding a dominant negative mutant of Rac1, suggesting that Rac activity is essential for the signalling cascade of ceramide to the nucleus. In a further study to analyse the downstream mediator of Rac in the ceramide-signalling pathway, we observed that either pretreatment with mepacrine, a potent and specific inhibitor of phospholipase A2, or co-transfection with antisense cytosolic phospholipase A2 (cPLA2) oligonucleotide repressed the C2-ceramide-induced SRE activation selectively, implying a critical role of cPLA2 in C2-ceramide-induced signalling to nucleus. Consistent with these results, the translocation of cPLA2 protein as well as the release of arachidonic acid, a principal product of phospholipase A2, was rapidly induced by the addition of C2-ceramide in a Rac-dependent manner. Together, our findings suggest the critical role of ‘Rac and subsequent activation of phospholipase A2’ in ceramide-signalling to nucleus.


1995 ◽  
Vol 15 (12) ◽  
pp. 6777-6784 ◽  
Author(s):  
C A Pickett ◽  
A Gutierrez-Hartmann

We have previously demonstrated that epidermal growth factor (EGF) produces activation of the rat prolactin (rPRL) promoter in GH4 neuroendocrine cells via a Ras-independent mechanism. This Ras independence of the EGF response appears to be cell rather than promoter specific. Oncogenic Ras also produces activation of the rPRL promoter when transfected into GH4 cells and requires the sequential activation of Raf kinase, mitogen-activated protein (MAP) kinase, and c-Ets-1/GHF-1 to mediate this response. In these studies, we have investigated the interaction between EGF and Ras in stimulating rPRL promoter activity and the role of Raf and MAP kinases in mediating the EGF response. We have also examined the role of several transcription factors and used various promoter mutants of the rPRL gene in order to better define the trans- and cis-acting components of the EGF response. EGF treatment of GH4 cells inhibits activation of the rPRL promoter produced by transfection of V12Ras from 24- to 4-fold in an EGF dose-dependent manner. This antagonistic effect of EGF and Ras is mutual in that transfection of V12Ras also blocks EGF-induced activation of the rPRL promoter in a Ras dose-dependent manner, from 5.5- to 1.6-fold. Transfection of a plasmid encoding the dominant-negative Raf C4 blocks Ras-induced activation by 66% but fails to inhibit EGF-mediated activation of the rPRL promoter. Similarly, transfection of a construct encoding an inhibitory form of MAP kinase decreases the Ras response by 50% but does not inhibit the EGF response. Previous studies have demonstrated that c-Ets-1 is necessary and that GHF-1 acts synergistically with c-Ets-1 in the Ras response of the rPRL promoter. In contrast, overexpression of neither c-Ets-1 nor GHF-1 enhanced EGF-mediated activation of the rPRL promoter, and dominant-negative forms of these transcription factors failed to inhibit the EGF response. Using 5' deletion and site-specific mutations, we have mapped the EGF response to two regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types.


2001 ◽  
Vol 114 (20) ◽  
pp. 3749-3757 ◽  
Author(s):  
Patrick Meraldi ◽  
Erich A. Nigg

Centrosome cohesion and separation are regulated throughout the cell cycle, but the underlying mechanisms are not well understood. Since overexpression of a protein kinase, Nek2, is able to trigger centrosome splitting (the separation of parental centrioles), we have surveyed a panel of centrosome-associated kinases for their ability to induce a similar phenotype. Cdk2, in association with either cyclin A or E, was as effective as Nek2, but several other kinases tested did not significantly interfere with centrosome cohesion. Centrosome splitting could also be triggered by inhibition of phosphatases, and protein phosphatase 1α (PP1α) was identified as a likely physiological antagonist of Nek2. Furthermore, we have revisited the role of the microtubule network in the control of centrosome cohesion. We could confirm that microtubule depolymerization by nocodazole causes centrosome splitting. Surprisingly, however, this drug-induced splitting also required kinase activity and could specifically be suppressed by a dominant-negative mutant of Nek2. These studies highlight the importance of protein phosphorylation in the control of centrosome cohesion, and they point to Nek2 and PP1α as critical regulators of centrosome structure.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S395-S395
Author(s):  
Keshav K Singh

Abstract To evaluate the consequences of the decline in mtDNA content associated with aging we have created an inducible mouse model expressing, in the polymerase domain of POLG1, a dominant-negative mutation that induces depletion of mtDNA. We utilized this inducible mouse model to modulate mitochondrial function by depleting and repleting the mtDNA content. We demonstrate that, in mice, ubiquitous expression of dominant-negative mutant POLG1 leads to 1) reduction of mtDNA content in skin, 2) skin wrinkles, and 3) hair loss. By turning off the mutant POLG1 transgene expression in the whole animal, the skin and hair phenotypes revert to normal after repletion of mtDNA. Thus, we have developed whole-animal mtDNA depleter-repleter mice. These mice present evidence that mtDNA homeostasis is involved in skin aging phenotype and loss of hair and provide an unprecedented opportunity to create tissue-specific mitochondrial modulation to determine the role of the mitochondria in a particular tissue.


2001 ◽  
Vol 356 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Mireille CORMONT ◽  
Nadine GAUTIER ◽  
Karine ILC ◽  
Yannick Le MARCHAND-BRUSTEL

The small GTPase Rab4 has been shown to participate in the subcellular distribution of GLUT4 under both basal and insulin-stimulated conditions in adipocytes. In the present work, we have characterized the effect of Rab4 ΔCT, a prenylation-deficient and thus cytosolic form of Rab4, in this process. We show that the expression of Rab4 ΔCT in freshly isolated adipocytes inhibits insulin-induced GLUT4 translocation, but only when this protein is in its GTP-bound active form. Further, it not only blocks the effect of insulin, but also that of a hyperosmotic shock, but does not interfere with the effect of zinc ions on GLUT4 translocation. Rab4 ΔCT was then shown to prevent GLUT4 translocation induced by the expression of an active form of phosphatidylinositol 3-kinase or of protein kinase B, without altering the activities of the enzymes. Our results are consistent with a role of Rab4 ΔCT acting as a dominant negative protein towards Rab4, possibly by binding to Rab4 effectors.


2020 ◽  
Author(s):  
Szilvia Déri ◽  
János Borbás ◽  
Teodóra Hartai ◽  
Lidia Hategan ◽  
Beáta Csányi ◽  
...  

Abstract Aims Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen–Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.1. Neither has the role of Glu293 in gating control been investigated nor has a pathogenic variant been described at this position. This study aimed to assess the involvement of Glu293 in CD-I subunit interactions and to establish the pathogenic role of the p.Glu293Lys variant in ATS1. Methods and results The p.Glu293Lys variant produced no current in homomeric form and showed dominant-negative effect over wild-type (WT) subunits. Immunocytochemical labelling showed the p.Glu293Lys subunits to distribute in the subsarcolemmal space. Salt bridge prediction indicated the presence of an intersubunit salt bridge network at the CD-I of Kir2.1, with the involvement of Glu293. Subunit interactions were studied by the NanoLuc® Binary Technology (NanoBiT) split reporter assay. Reporter constructs carrying NanoBiT tags on the intracellular termini produced no bioluminescent signal above background with the p.Glu293Lys variant in homomeric configuration and significantly reduced signals in cells co-expressing WT and p.Glu293Lys subunits simultaneously. Extracellularly presented reporter tags, however, generated comparable bioluminescent signals with heteromeric WT and p.Glu293Lys subunits and with homomeric WT channels. Conclusions Loss of function and dominant-negative effect confirm the causative role of p.Glu293Lys in ATS1. Co-assembly of Kir2.1 subunits is impaired in homomeric channels consisting of p.Glu293Lys subunits and is partially rescued in heteromeric complexes of WT and p.Glu293Lys Kir2.1 variants. These data point to an important role of Glu293 in mediating subunit assembly, as well as in gating of Kir2.1 channels.


Sign in / Sign up

Export Citation Format

Share Document