Cell cycle-dependent control of polarised development by a cyclin-dependent kinase-like protein in theFucuszygote

Development ◽  
2001 ◽  
Vol 128 (21) ◽  
pp. 4383-4392
Author(s):  
Florence Corellou ◽  
Colin Brownlee ◽  
Bernard Kloareg ◽  
François-Yves Bouget

Although iterative development can be uncoupled from morphogenesis in plant organs, the relationship between the cell cycle and developmental events is not well established in embryos. Zygotes of fucoid algae, including Fucus and Pelvetia are particularly well suited for studying the interaction(s) between cell cycle progression and the early morphogenetic events, as the establishment of polarity and its morphogenetic expression, i.e. germination, and the first cell cycle are concomitant. We have previously demonstrated that, in Fucus zygotes, various aspects of cell cycle progression are tightly controlled by cyclin-dependent kinase (CDK)-like proteins, including two PSTAIRE CDK-like proteins, p34 and p32, which are synthesised after fertilisation. We show that specific inhibition of CDK-like proteins, either with purine derivatives such as olomoucine and amino-purvalanol or by microinjection of the CDK inhibitor p21cip1, prevents germination and cell division. Whereas direct inhibition of DNA replication by aphidicolin did not affect polarised development, olomoucine, which has previously been shown to prevent entry in S phase, and other purine derivatives also inhibited photopolarisation. Early microinjection of a monoclonal anti-PSTAIRE antibody also prevented germination and cell division. Only p34 had affinity for amino-purvalanol, suggesting that among PSTAIRE CDKs, this protein is the main target of purine derivatives. Models to account for the simultaneous control of early cell cycle progression and polarisation are proposed.

Author(s):  
Deniz Pirincci Ercan ◽  
Frank Uhlmann

AbstractThe cell cycle is an ordered series of events by which cells grow and divide to give rise to two daughter cells. In eukaryotes, cyclin–cyclin-dependent kinase (cyclin–Cdk) complexes act as master regulators of the cell division cycle by phosphorylating numerous substrates. Their activity and expression profiles are regulated in time. The budding yeast S. cerevisiae was one of the pioneering model organisms to study the cell cycle. Its genetic amenability continues to make it a favorite model to decipher the principles of how changes in cyclin-Cdk activity translate into the intricate sequence of substrate phosphorylation events that govern the cell cycle. In this chapter, we introduce robust and straightforward methods to analyze cell cycle progression in S. cerevisiae. These techniques can be utilized to describe cell cycle events and to address the effects of perturbations on accurate and timely cell cycle progression.


2019 ◽  
Author(s):  
Niclas Nordholt ◽  
Johan H. van Heerden ◽  
Frank J. Bruggeman

ABSTRACTThe growth rate of single bacterial cells is continuously disturbed by random fluctuations in biosynthesis rates and by deterministic cell-cycle events, such as division, genome duplication, and septum formation. It is not understood whether, and how, bacteria reject these disturbances. Here we quantified growth and constitutive protein expression dynamics of singleBacillus subtiliscells, as a function of cell-cycle-progression. Variation in birth size and growth rate, resulting from unequal cell division, is largely compensated for when cells divide again. We analysed the cell-cycle-dynamics of these compensations and found that both growth and protein expression exhibited biphasic behaviour. During a first phase of variable duration, the absolute rates were approximately constant and cells behaved as sizers. In the second phase, rates increased and growth behaviour exhibited characteristics of a timer-strategy. This work shows how cell-cycle-dependent rate adjustments of biosynthesis and growth are integrated to compensate for physio-logical disturbances caused by cell division.IMPORTANCEUnder constant conditions, bacterial populations can maintain a fixed average cell size and constant exponential growth rate. At the single cell-level, however, cell-division can cause significant physiological perturbations, requiring compensatory mechanisms to restore the growth-related characteristics of individual cells toward that of the average cell. Currently, there is still a major gap in our understanding of the dynamics of these mechanisms, i.e. how adjustments in growth, metabolism and biosynthesis are integrated during the bacterial cell-cycle to compensate the disturbances caused by cell division. Here we quantify growth and constitutive protein expression in individual bacterial cells at sub-cell-cycle resolution. Significantly, both growth and protein production rates display structured and coordinated cell-cycle-dependent dynamics. These patterns reveal the dynamics of growth rate and size compensations during cell-cycle progression. Our findings provide a dynamic cell-cycle perspective that offers novel avenues for the interpretation of physiological processes that underlie cellular homeostasis in bacteria.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


1993 ◽  
Vol 264 (4) ◽  
pp. C783-C788 ◽  
Author(s):  
R. Malam-Souley ◽  
M. Campan ◽  
A. P. Gadeau ◽  
C. Desgranges

Because exogenous ATP is suspected to influence the proliferative process, its effects on the cell cycle progression of arterial smooth muscle cells were studied by investigating changes in the mRNA steady-state level of cell cycle-dependent genes. Stimulation of cultured quiescent smooth muscle cells by exogenous ATP induced chronological activation not only of immediate-early but also of delayed-early cell cycle-dependent genes, which were usually expressed after a mitogenic stimulation. In contrast, ATP did not increase late G1 gene mRNA level, demonstrating that this nucleotide induces a limited cell cycle progression of arterial smooth muscle cells through the G1 phase but is not able by itself to induce crossing over the G1-S boundary and consequently DNA synthesis. An increase in c-fos mRNA level was also induced by ADP but not by AMP or adenosine. Moreover, 2-methylthioadenosine 5'-triphosphate but not alpha, beta-methyleneadenosine 5'-triphosphate mediated this kind of response. Taken together, these results demonstrate that extracellular ATP induces the limited progression of arterial smooth muscle cells through the G1 phase via its fixation on P2 gamma receptors.


2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


2012 ◽  
Vol 80 (4) ◽  
pp. 1467-1478 ◽  
Author(s):  
Carolina Coelho ◽  
Lydia Tesfa ◽  
Jinghang Zhang ◽  
Johanna Rivera ◽  
Teresa Gonçalves ◽  
...  

ABSTRACTWe investigated the outcome of the interaction ofCryptococcus neoformanswith murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis ofC. neoformanspromoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis ofC. neoformanspromoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellularC. neoformansresidence that manifested itself in impaired cell cycle completion as a consequence of a block in the G2/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replicationin vivoand demonstrated that these cells are capable of low levels of cell division in the presence or absence ofC. neoformansinfection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect ofC. neoformansinfection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferationin vivo.


Sign in / Sign up

Export Citation Format

Share Document