Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development

Development ◽  
2002 ◽  
Vol 129 (16) ◽  
pp. 3839-3850 ◽  
Author(s):  
Estella Wong ◽  
Chunzhong Yang ◽  
Jun Wang ◽  
Danny Fuller ◽  
William F. Loomis ◽  
...  

The cadA gene in Dictyostelium encodes the Ca2+-dependent cell adhesion molecule DdCAD-1, which is expressed soon after the initiation of development. To investigate the biological role of DdCAD-1, the cadA gene was disrupted by homologous recombination. The cadA-null cells showed a 50% reduction in EDTA-sensitive cell adhesion. The remaining EDTA-sensitive adhesion sites were resistant to dissociation by anti-DdCAD-1 antibody, suggesting that they were distinct adhesion sites. Cells that lacked DdCAD-1 were able to complete development and form fruiting bodies. However, they displayed abnormal slug morphology and culmination was delayed by ∼6 hours. The yield of spores was reduced by ∼50%. The proportion of prestalk cells in cadA– slugs showed a 2.5-fold increase over the parental strain. When cadA– cells were transfected with pcotB::GFP to label prespore cells, aberrant cell-sorting patterns in slugs became apparent. When mutant prestalk cells were mixed with wild-type prespore cells, mutant prestalk cells were unable to return to the anterior position of chimeric slugs, suggesting defects in the sorting mechanism. The wild-type phenotype was restored when cadA– cells were transfected with a cadA-expression vector. These results indicate that, in addition to cell-cell adhesion, DdCAD-1 plays a role in cell type proportioning and pattern formation.

2006 ◽  
Vol 291 (5) ◽  
pp. L1050-L1058 ◽  
Author(s):  
Sandra Perkowski ◽  
Arnaud Scherpereel ◽  
Juan-Carlos Murciano ◽  
Evguenia Arguiri ◽  
Charalambos C. Solomides ◽  
...  

The objective of this study was to quantitatively assess changes in cell adhesion molecule (CAM) expression on the pulmonary endothelial surface during hyperoxia and to assess the functional significance of those changes on cellular trafficking and development of oxygen-induced lung injury. Mice were placed in >95% O2 for 0–72 h, and pulmonary injury and neutrophil (PMN) sequestration were assessed. Specific pulmonary CAM expression was quantified with a dual-radiolabeled MAb technique. To test the role of CAMs in PMN trafficking during hyperoxia, blocking MAbs to murine P-selectin, ICAM-1, or platelet-endothelial cell adhesion molecule-1 (PECAM-1) were injected in wild-type mice. Mice genetically deficient in these CAMs and PMN-depleted mice were also evaluated. PMN sequestration occurred within 8 h of hyperoxia, although alveolar emigration occurred later (between 48 and 72 h), coincident with rapid escalation of the lung injury. Hyperoxia significantly increased pulmonary uptake of radiolabeled antibodies to P-selectin, ICAM-1, and PECAM-1, reflecting an increase in their level on pulmonary endothelium and possibly sequestered blood cells. Although both anti-PECAM-1 and anti-ICAM-1 antibodies suppressed PMN alveolar influx in wild-type mice, only mice genetically deficient in PECAM-1 showed PMN influx suppression. Neither CAM blockade, nor genetic deficiency, nor PMN depletion attenuated lung injury. We conclude that early pulmonary PMN retention during hyperoxia is not temporally associated with an increase in endothelial CAMs; however, subsequent PMN emigration into the alveolar space may be supported by PECAM-1 and ICAM-1. Blocking PMN recruitment did not prevent lung injury, supporting dissociation between PMN infiltration and lung injury during hyperoxia in mice.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Junkai Hu ◽  
Stanley Li Lin ◽  
Melitta Schachner

AbstractDeposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer’s disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expression of L1 and a 70 kDa cleavage product of L1 (L1-70) was reduced in the hippocampus of AD (APPswe) mice. Interestingly, upregulation of L1-70 expression in the hippocampus of 18-month-old APPswe mice, by parabiosis involving the joining of the circulatory system of an 18-month-old APPswe mouse with a 2-month-old wild-type C57BL/6 mouse, reduced amyloid plaque deposition. Furthermore, the reduction was accompanied by the appearance of a high number of activated microglia. Mechanistically, we observed that L1-70 could combine with topoisomerase 1 (Top1) to form a complex, L1-70/Top1, that was able to regulate expression of macrophage migration inhibitory factor (MIF), resulting in the activation of microglia and reduction of Aβ plaques. Also, transforming growth factor β1 (TGFβ-1) transferred from the blood of young wild-type C57BL/6 mice to the aged AD mice, was identified as a circulating factor that induces full-length L1 and L1-70 expression. All together, these findings suggest that L1-70 contributes to the clearance of Aβ in AD, thereby adding a novel perspective in understanding AD pathogenesis.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Xilin Wu ◽  
Sumedha Garg ◽  
Claudia P Cabrera ◽  
Elena Azizan ◽  
Junhua Zhou ◽  
...  

Abstract Primary Aldosteronism (PA) is the commonest curable cause of hypertension. Whole exome sequencing (WES) in 2011 and 2013 identified common somatic mutations in genes regulating membrane polarisation in 60–80% of aldosterone-producing adenomas (APA). We undertook WES on 39 consecutive APAs in search of further variants. 1 APA revealed a somatic mutation (Val380Asp) within the single transmembrane domain of Cell Adhesion Molecule 1 (CADM1). An adjacent mutation (Gly379Asp) was discovered on WES from a PA patient in Munich. Both short and long isoforms (442 & 453 residues) of wild-type (WT) and both mutant CADM1 genes were cloned into lentivirus vectors and each transduced into adrenocortical (H295R) cells to assess its effect on aldosterone secretion and other parameters. Previous studies in pancreatic islet cells suggested a role of CADM1 in regulating gap junction (GJ) communication. To assess this we microinjected single WT or mutant H295R cells with the GJ permeable dye calceinAM and counted the dye-positive cells after 1 hour. The effect of inhibiting or silencing GJs in H295R cells using peptide gap27 or a Dharmacon smartpool was assessed. H295R cells were also co-transfected with WT or mutant CADM1 and the GJ protein CX43, tagged with the mApple fluorophore. These were mixed with cells transfected with CX43-Venus, allowing confocal visualisation of GJ formation. Protein modelling was undertaken to determine whether Asp in the intramembranous domain changes angulation of CADM1. All mutant isoforms had consistently different effects, shown as a range compared to WT. Cells transduced with mutant CADM1 showed 3-6-fold increase in aldosterone secretion (p<0.01) and 10-20-fold increase in CYP11B2 expression (p<0.001) compared to WT. Dye transfer assays showed paucity of dye transfer between neighbouring mutant CADM1 cells, while calcein passed easily through GJs in WT cells. CX43 inhibition increased aldosterone secretion 2-fold (p<0.01), and CYP11B2 expression 3 to 8-fold (<0.001). Knock-down of GJ proteins increased aldosterone secretion 1.5-fold (p<0.01) and CYP11B2 expression 1.7-fold (p<0.001). Protein modelling showed mutations to increase the angle of ectodomains to cell membrane, from 49o in WT cells, to 62o and 90o in Gly379Asp and Val380Asp respectively; increasing inter-cell distance from 21.2nm to 24.7 and 27.9nm. Mixing of Venus and mApple-tagged CX43 transfected cells showed fewer intact GJ channels in cells co-transfected with mutant compared to WT CADM1 [mutant 42/291 (14.4%) VS WT 68/212 (32.1%) p<0.001]. The CADM1 mutations shows the importance of membrane proteins in aldosterone regulation to extend beyond ion channels and transporters. A key role may be to bring opposing CX43 hemichannels close enough to form GJ channels, permitting the oscillating Ca2+ currents which regulate aldosterone in intact adrenal slices.


2004 ◽  
Vol 286 (5) ◽  
pp. C1195-C1202 ◽  
Author(s):  
Peter J. Kuhlencordt ◽  
Eva Rosel ◽  
Robert E. Gerszten ◽  
Manuel Morales-Ruiz ◽  
David Dombkowski ◽  
...  

The objective of this study was to determine whether absence of endothelial nitric oxide synthase (eNOS) affects the expression of cell surface adhesion molecules in endothelial cells. Murine lung endothelial cells (MLECs) were prepared by immunomagnetic bead selection from wild-type and eNOS knockout mice. Wild-type cells expressed eNOS, but eNOS knockout cells did not. Expression of neuronal NOS and inducible NOS was not detectable in cells of either genotype. Upon stimulation, confluent wild-type MLECs produced significant amounts of NO compared with Nω-monomethyl-l-arginine-treated wild-type cells. eNOS knockout and wild-type cells showed no difference in the expression of E-selectin, P-selectin, intracellular adhesion molecule-1, and vascular cell adhesion molecule-1 as measured by flow cytometry on the surface of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31)-positive cells. Both eNOS knockout and wild-type cells displayed the characteristics of resting endothelium. Adhesion studies in a parallel plate laminar flow chamber showed no difference in leukocyte-endothelial cell interactions between the two genotypes. Cytokine treatment induced endothelial cell adhesion molecule expression and increased leukocyte-endothelial cell interactions in both genotypes. We conclude that in resting murine endothelial cells, absence of endothelial production of NO by itself does not initiate endothelial cell activation or promote leukocyte-endothelial cell interactions. We propose that eNOS derived NO does not chronically suppress endothelial cell activation in an autocrine fashion but serves to counterbalance signals that mediate activation.


2012 ◽  
Vol 199 (7) ◽  
pp. 1131-1143 ◽  
Author(s):  
Juan Manuel Gomez ◽  
Ying Wang ◽  
Veit Riechmann

Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.


1999 ◽  
Vol 144 (2) ◽  
pp. 325-337 ◽  
Author(s):  
Farzad Esni ◽  
Inge-Bert Täljedal ◽  
Anne-Karina Perl ◽  
Harold Cremer ◽  
Gerhard Christofori ◽  
...  

Classical cell dissociation/reaggregation experiments with embryonic tissue and cultured cells have established that cellular cohesiveness, mediated by cell adhesion molecules, is important in determining the organization of cells within tissue and organs. We have employed N-CAM-deficient mice to determine whether N-CAM plays a functional role in the proper segregation of cells during the development of islets of Langerhans. In N-CAM-deficient mice the normal localization of glucagon-producing α cells in the periphery of pancreatic islets is lost, resulting in a more randomized cell distribution. In contrast to the expected reduction of cell–cell adhesion in N-CAM-deficient mice, a significant increase in the clustering of cadherins, F-actin, and cell–cell junctions is observed suggesting enhanced cadherin-mediated adhesion in the absence of proper N-CAM function. These data together with the polarized distribution of islet cell nuclei and Na+/K+-ATPase indicate that islet cell polarity is also affected. Finally, degranulation of β cells suggests that N-CAM is required for normal turnover of insulin-containing secretory granules. Taken together, our results confirm in vivo the hypothesis that a cell adhesion molecule, in this case N-CAM, is required for cell type segregation during organogenesis. Possible mechanisms underlying this phenomenon may include changes in cadherin-mediated adhesion and cell polarity.


Sign in / Sign up

Export Citation Format

Share Document