TheDrosophila melanogastergenebrain tumornegatively regulates cell growth and ribosomal RNA synthesis

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Deborah J. Frank ◽  
Bruce A. Edgar ◽  
Mark B. Roth

The regulation of ribosome synthesis is likely to play an important role in the regulation of cell growth. Previously, we have shown that the ncl-1 gene in Caenorhabditis elegans functions as an inhibitor of cell growth and ribosome synthesis. We now indicate that the Drosophila melanogaster tumor suppressor brain tumor (brat) is an inhibitor of cell growth and is a functional homolog of the C. elegans gene ncl-1. The brat gene is able to rescue the large nucleolus phenotype of ncl-1 mutants. We also show that brat mutant cells are larger, have larger nucleoli, and have more ribosomal RNA than wild-type cells. Furthermore, brat overexpressing cells contain less ribosomal RNA than control cells. These results suggest that the tumorous phenotype of brat mutants may be due to excess cell growth and ribosome synthesis.

1998 ◽  
Vol 140 (6) ◽  
pp. 1321-1329 ◽  
Author(s):  
Deborah J. Frank ◽  
Mark B. Roth

Regulation of ribosome synthesis is an essential aspect of growth control. Thus far, little is known about the factors that control and coordinate these processes. We show here that the Caenorhabditis elegans gene ncl-1 encodes a zinc finger protein and may be a repressor of RNA polymerase I and III transcription and an inhibitor of cell growth. Loss of function mutations in ncl-1, previously shown to result in enlarged nucleoli, result in increased rates of rRNA and 5S RNA transcription and enlarged cells. Furthermore, ncl-1 adult worms are larger, have more protein, and have twice as much rRNA as wild-type worms. Localization studies show that the level of NCL-1 protein is independently regulated in different cells of the embryo. In wild-type embryos, cells with the largest nucleoli have the lowest level of NCL-1 protein. Based on these results we propose that ncl-1 is a repressor of ribosome synthesis and cell growth.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 429-434
Author(s):  
J James Donady ◽  
R L Seecof ◽  
M A Fox

ABSTRACT Drosophila melanogaster embryos that lacked ribosomal DNA were obtained from appropriate crosses. Cells were taken from such embryos before overt differentiation took place and were cultured in vitro. These cells differentiated into neurons and myocytes with the same success as did wild-type controls. Therefore, ribosomal RNA synthesis is not necessary for the differentiation of neurons and myocytes in vitro.


2007 ◽  
Vol 6 (6) ◽  
pp. 907-918 ◽  
Author(s):  
Dana Schaefer ◽  
Pierre Côte ◽  
Malcolm Whiteway ◽  
Richard J. Bennett

ABSTRACT Mating in Candida albicans and Saccharomyces cerevisiae is regulated by the secretion of peptide pheromones that initiate the mating process. An important regulator of pheromone activity in S. cerevisiae is barrier activity, involving an extracellular aspartyl protease encoded by the BAR1 gene that degrades the alpha pheromone. We have characterized an equivalent barrier activity in C. albicans and demonstrate that the loss of C. albicans BAR1 activity results in opaque a cells exhibiting hypersensitivity to alpha pheromone. Hypersensitivity to pheromone is clearly seen in halo assays; in response to alpha pheromone, a lawn of C. albicans Δbar1 mutant cells produces a marked zone in which cell growth is inhibited, whereas wild-type strains fail to show halo formation. C. albicans mutants lacking BAR1 also exhibit a striking mating defect in a cells, but not in α cells, due to overstimulation of the response to alpha pheromone. The block to mating occurs prior to cell fusion, as very few mating zygotes were observed in mixes of Δbar1 a and α cells. Finally, in a barrier assay using a highly pheromone-sensitive strain, we were able to demonstrate that barrier activity in C. albicans is dependent on Bar1p. These studies reveal that a barrier activity to alpha pheromone exists in C. albicans and that the activity is analogous to that caused by Bar1p in S. cerevisiae.


Science ◽  
1965 ◽  
Vol 149 (3680) ◽  
pp. 188-191 ◽  
Author(s):  
L. Waters ◽  
L. Dure

Genetics ◽  
1972 ◽  
Vol 72 (2) ◽  
pp. 267-276
Author(s):  
Roberto Weinmann

ABSTRACT Analysis of the rates and amounts of rRNA and 5s RNA synthesized in Drosophila melanogaster bobbed mutants was done by using acrylamide-gel electrophoresis. The results show that the amounts of rRNA synthesized are constant, although the rates of rRNA synthesis in bb's are reduced to 30% of the wild-type level. The rates of synthesis of 5s RNA were constant. The rate of synthesis of the two kinds of molecules that enter in equimolar amounts into the mature ribosome is non-coordinated.—The rates of rRNA synthesis were shown to be proportional to the length of the scutellar bristles, supporting the notion that in trichogen cells there is no developmental delay, but the size of the bristle depends directly on the rate of rRNA synthesis.


2009 ◽  
Vol 69 (16) ◽  
pp. 6515-6521 ◽  
Author(s):  
Ken Takezawa ◽  
Isamu Okamoto ◽  
Kimio Yonesaka ◽  
Erina Hatashita ◽  
Yuki Yamada ◽  
...  

2003 ◽  
Vol 77 (5) ◽  
pp. 2990-2997 ◽  
Author(s):  
Yuriko Tomita ◽  
Tomomitsu Mizuno ◽  
Juana Díez ◽  
Satoshi Naito ◽  
Paul Ahlquist ◽  
...  

ABSTRACT The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.


2019 ◽  
Vol 17 (11) ◽  
pp. 2294-2305 ◽  
Author(s):  
Yen-Ting Chen ◽  
Jih-Jung Chen ◽  
Hsiang-Tsui Wang

Sign in / Sign up

Export Citation Format

Share Document