An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians

Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 223-247
Author(s):  
B. Woo Youn ◽  
R. E. Keller ◽  
G. M. Malacinski

A scanning electron microscopic, comparative survey of notochord and somite formation including some details of change in cell morphology and arrangement, was made of selected stages of two species of anuran amphibians (Xenopus laevis and Rana pipiens) and two species of urodeles (Ambystoma mexicanum and Pleurodeles waltlii). The ectoderm or neural plate was removed from fixed embryos and the dorsal aspect of the developing notochord and somite mesoderm was photographed. Micrographs of comparable stages of all species were arranged together to form an atlas of notochord and somite formation. Similar morphogenetic events occur in the same sequence in the four species. Notochordal cells become distinguishable from paraxial mesodermal cells by shape, closeness of packing, and arrangement. Notochordal elongation is accompanied by a decrease in cross-sectional area and by cell rearrangement. Somitic mesoderm becomes distinguished from lateral mesoderm by a change in cell shape and orientation, followed by segmentation of somites. The schedule of somite formation was compared and related to the staging series for each species. The urodeles differ from the anurans in that the notochordal region in the early neurula stages is triangular, with the broadest part in the posterior region of the embryo. In anurans it is uniform in width. This difference may reflect differences in gastrulation and in the mechanism of elongation of the posterior part of the embryo in the neurula.

2013 ◽  
Vol 749 ◽  
pp. 262-269
Author(s):  
Chun Tung Wu ◽  
C.Y. Chung

This study examined RNEF with scanning electron microscope (SEM), for surface flaws, internal voids and inclusions. Six commercial brands of 4% taper RNEF: PF (#25, 25mm, Dentsply Tulsa Dental Specialties, Tulsa, OK), GTX (#20, 25mm, Dentsply Tulsa Dental Specialties, Tulsa, OK), NRT (#25, 25mm, MANI Inc., Tochigi, Japan), FKG (#25, 25mm, FKG, Dentaire), K3 (#25, 25mm) and TF (Twisted File #25, 27mm) (Sybron Kerr, Orange, CA) were examined. Full length and 4mm segment of each RNEF brand was mounted in Al plate for surface morphology and conductive epoxy resin for cross-sectional imaging with SEM (JEOL JSM-820) respectively. EDX spectrum was collected from specimens with EDX spectrometer coupled to SEM. EDX software was used for quantitative analysis. This study demonstrated the existence of surface flaws as machining marks, notches, crevices, fissures and pits. Internal voids of micro-to sub-micrometer magnitude were observed. Ti-rich inclusions were found dispersed in the equiatomic to near-equiatomic NiTi substrate of RNEF. Surface flaws, internal voids and inclusions were common findings on RNEF studied. Their effects on the corrosion and fatigue resistance of RNEF deserve further investigation.


Author(s):  
Toichiro Kuwabara

Although scanning electron microscopy has a great potential in biological application, there are certain limitations in visualization of the biological structure. Satisfactory techniques to demonstrate natural surfaces of the tissue and the cell have been reported by several investigators. However, it is commonly found that the surface cell membrane is covered with a minute amount of mucin, secretory substance or tissue fluid as physiological, pathological or artefactual condition. These substances give a false surface appearance, especially when the tissue is fixed with strong fixatives. It seems important to remove these coating substances from the surface of the cell for demonstration of the true structure.


Author(s):  
T. Kanetaka ◽  
M. Cho ◽  
S. Kawamura ◽  
T. Sado ◽  
K. Hara

The authors have investigated the dissolution process of human cholesterol gallstones using a scanning electron microscope(SEM). This study was carried out by comparing control gallstones incubated in beagle bile with gallstones obtained from patients who were treated with chenodeoxycholic acid(CDCA).The cholesterol gallstones for this study were obtained from 14 patients. Three control patients were treated without CDCA and eleven patients were treated with CDCA 300-600 mg/day for periods ranging from four to twenty five months. It was confirmed through chemical analysis that these gallstones contained more than 80% cholesterol in both the outer surface and the core.The specimen were obtained from the outer surface and the core of the gallstones. Each specimen was attached to alminum sheet and coated with carbon to 100Å thickness. The SEM observation was made by Hitachi S-550 with 20 kV acceleration voltage and with 60-20, 000X magnification.


Author(s):  
S. K. Pena ◽  
C. B. Taylor ◽  
J. Hill ◽  
J. Safarik

Introduction: Oxidized cholesterol derivatives have been demonstrated in various cell cultures to be very potent inhibitors of 3-hvdroxy-3- methylglutaryl Coenzyme A reductase which is a principle regulator of cholesterol biosynthesis in the cell. The cholesterol content in the cells exposed to oxidized cholesterol was found to be markedly decreased. In aortic smooth muscle cells, the potency of this effect was closely related to the cytotoxicity of each derivative. Furthermore, due to the similarity of their molecular structure to that of cholesterol, these oxidized cholesterol derivatives might insert themselves into the cell membrane, alter membrane structure and function and eventually cause cell death. Arterial injury has been shown to be the initial event of atherosclerosis.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Author(s):  
Peter M. Andrews

Although there have been a number of recent scanning electron microscopic reports on the renal glomerulus, the advantages of scanning electron microscopy have not yet been applied to a systematic study of the uriniferous tubules. In the present investigation, scanning electron microscopy was used to study the ultrastructural morphology of the proximal, distal, thin loop, and collecting tubules. Material for observation was taken from rat kidneys which were fixed by vascular perfusion, sectioned by either cutting or fracturing technigues, and critically point dried.The brush border characterising proximal tubules is first detected on the luminal surface of Bowman's capsule adjacent to the urinary pole orifice. In this region one frequently finds irregular microvilli characterized by broad and flattened bases with occasional bulbous structures protruding from their surfaces.


Author(s):  
D.J. Lim ◽  
W.C. Lane

The morphology and function of the vestibular sensory organs has been extensively studied during the last decade with the advent of electron microscopy and electrophysiology. The opening of the space age also accelerated active investigation in this area, since this organ is responsible for the sensation of balance and of linear, angular and gravitational acceleration.The vestibular sense organs are formed by the saccule, utricle and three ampullae of the semicircular canals. The maculae (sacculi and utriculi) have otolithic membranes on the top of the sensory epithelia. The otolithic membrane is formed by a layer of thick gelatin and sand-piles of calcium carbonate crystals (Fig.l).


Author(s):  
M.D. Graham

The recent development of the scanning electron microscope has added great impetus to the study of ultrastructural details of normal human ossicles. A thorough description of the ultrastructure of the human ossicles is required in order to determine changes associated with disease processes following medical or surgical treatment.Human stapes crura were obtained at the time of surgery for clinical otosclerosis and from human cadaver material. The specimens to be examined by the scanning electron microscope were fixed immediately in the operating room in a cold phosphate buffered 2% gluteraldehyde solution, washed with Ringers, post fixed in cold 1% osmic acid and dehydrated in graded alcohol. Specimens were transferred from alcohol to a series of increasing concentrations of ethyl alcohol and amyl acetate. The tissue was then critical point dried, secured to aluminum stubs and coated with gold, approximately 150A thick on a rotating stage in a vacuum evaporator. The specimens were then studied with the Kent-Cambridge S4-10 Scanning Electron Microscope at an accelerating voltage of 20KV.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


Sign in / Sign up

Export Citation Format

Share Document