Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis

Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 175-206
Author(s):  
Sarah K. Howlett ◽  
Virginia N. Bolton

Mouse oocytes were fertilized in vitro and the precise timing and sequence of morphological and molecular events occurring during the first cell cycle were investigated. The timing of development through the first cell cycle was found to be initiated by an event associated with sperm penetration rather than with germinal vesicle breakdown. DNA replication is initiated randomly in either pronucleus of a given egg, beginning approximately 11 h post insemination (hpi), and S phase lasting 6–7 h in both. Careful study of polypeptide synthetic profiles revealed three classes of changes in polypeptide synthesis during the first few hours of development: fertilization-independent, fertilization-accelerated, and fertilization-dependent. Pulse-chase experiments and in vitro translation of extracted mRNA showed that the changes in polypeptide synthetic profile result from differential mRNA activation, differential polypeptide turnover and post-translational modifications. These results support the notion that following ovulation, development is controlled at two levels. An endogenous (oocyte) programme, set in train by the terminal events of oocyte maturation, may regulate the ‘housekeeping’ functions of the egg, while sperm penetration activates a further endogenous (fertilization) programme, which may serve to initiate subsequent embryogenesis.

2003 ◽  
Vol 15 (7) ◽  
pp. 383 ◽  
Author(s):  
H. M. Quan ◽  
X. Q. Meng ◽  
Y. Hou ◽  
Q. Y. Sun

Pig oocytes cultured in vitro for 0, 25, 33 and 44 h were inseminated by frozen–thawed ejaculated sperm. At specified times after insemination, sperm penetration, cell cycle progression and mitogen-activated protein kinase (MAPK) phosphorylation were evaluated. It was shown that: (1) oocytes at various maturational stages could be penetrated by sperm; (2) sperm penetration did not affect meiotic cell cycle progression; (3) sperm penetration of germinal vesicle (GV) oocytes and maturing oocytes did not alter MAPK phosphorylation; and (4) when premetaphase I (pre-MI) and metaphase I (MI) oocytes, in which MAPK was activated, were fertilised, no evident MAPK dephosphorylation was detected as in metaphase II oocytes. The data suggest that sperm penetration before oocyte maturation does not affect MAPK phosphorylation and that the machinery inactivating MAPK upon fertilisation is not developed in maturing (pre-MI to MI) oocytes.


Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 661-667 ◽  
Author(s):  
Xihe Li ◽  
Y Qin ◽  
Sandra Wilsher ◽  
W R Allen

Various types of cell cycle organization occur in mammals. In this study, centrosome changes during meiosis in horse oocytes, and first cell cycle organization following fertilization, parthenogenesis and nuclear transfer, were monitored. Cumulus oocyte complexes harvested from horse ovaries obtained from slaughtered mares were cultured in vitro. Meiotic oocytes of germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I and II (MI and MII) stages were selected at various set times during in vitro maturation. Embryos at the first cell cycle stage were generated by subjecting MII stage oocytes to fertilization by intracytoplasmic sperm injection (ICSI), parthenogenetic treatment or nuclear transfer. Centrosome changes during meiosis and the first cell cycle organization were detected by indirect immunofluorescent staining, using a mouse anti-α-tubulin antibody for microtubules and a rabbit anti-γ-tubulin antibody for centrosomes. These examinations showed that the centrosomes of the horse oocyte reorganize themselves from the beginning of GV stage to leave only PCM of γ-tubulin surrounding both poles of the MI and MII stage spindles. These MII oocytes can organize the separation of metaphase chromosomes during the first embryonic cell cycle by parthenogenetic treatment. When the MII oocytes were subjected to ICSI or nuclear transfer, one or two red-stained centrosomes of γ-tubulin were introduced by the fertilising spermatozoon or the donor cell which associated with the sperm chromatin in the fertilized embryos and with the donor cell chromatin and microtubules in the cloned embryos. This finding suggests that centrosomes are not an essential component in the formation of the metaphase spindle during meiotic maturation of horse oocytes, but they can be introduced from the spermatozoon or donor cell and are necessary for the organization of normal embryonic development.


2018 ◽  
Vol 315 (1) ◽  
pp. C115-C121 ◽  
Author(s):  
Weber Beringui Feitosa ◽  
Patricia L. Morris

SUMOylation, a process of posttranslational modification of proteins by the small ubiquitin-related modifier (SUMO) family of proteins, is known to be involved in yeast and mammalian somatic cell-cycle regulation. However, the identities of the SUMO-modified oocyte targets are largely unknown and the functional role(s) for SUMOylation during mammalian oocyte maturation remains unclear. On the basis of studies in non-germline cells, protein kinase B/Akt is a potential SUMOylation target in the mouse oocyte, where it plays an essential role in cell-cycle resumption and progression during maturation. This study investigated the temporal patterns and prospective role(s) for interactions between SUMOylation and Akt serine-phosphorylation during oocyte meiotic resumption. Pharmacological inhibition of SUMOylation significantly decreased follicular fluid meiosis-activating sterol-induced cell-cycle resumption in oocytes matured in vitro and negatively affected the phosphorylation and nuclear translocation of Akt. Similarly, nuclear localization of cyclin D1, a downstream target of Akt activation, was significantly decreased following SUMOylation inhibition. Together these data show that SUMO and the posttranslational process of SUMOylation are involved in cell-cycle resumption during murine oocyte maturation and exert a regulatory influence on the Akt pathway during germinal vesicle breakdown.


1987 ◽  
Vol 66 (2) ◽  
pp. 457-461 ◽  
Author(s):  
A. Bennick

Considerable advances have been made in the genetics of salivary proline-rich proteins (PRP). The genes for acidic, basic, and glycosylated PRP have been cloned. They code for precursor proteins that all have an acidic N-terminal followed by proline-rich repeat sequences. Structural studies on secreted proteins have demonstrated that not only acidic but also some basic PRPs have this general structure. It is possible that mRNA for different PRP may have originated from a single gene by differential mRNA splicing, but post-translational cleavages of the primary translation product apparently also occur. In vitro translation of salivary gland mRNA results in a single precursor protein for acidic PRP. Such in vitro translated protein can be cleaved by salivary kallikrein, giving rise to two commonly secreted acidic PRPs, and kallikrein or kallikrein-like enzymes may be responsible for other post-translational cleavages of PRPs. Acidic as well as some basic PRPs are phosphorylated. A protein kinase has been demonstrated in salivary glands which phosphorylates the PRPs and other secreted salivary proteins in a cAMP and Ca2+-calmodulinindependent manner. Knowledge of the conformation of PRPs is limited. There is no conclusive evidence of polyproline-like structure in the proline-rich part of PRPs. Ca2+ binding studies on acidic PRPs indicate that there is interaction between the Ca2+ binding N-terminal end and the proline-rich C-terminal part. This interaction is relieved by modification of arginine side-chains. 1H, 32P, and 43Ca NMR studies have further elucidated the conformation of acidic PRPs in solution. Present evidence shows that salivary PRPs constitute a unique superfamily of proteins which pose a number of interesting questions concerning gene structure, pre- and post-translational modifications, and protein conformation.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203 ◽  
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


Zygote ◽  
2005 ◽  
Vol 13 (4) ◽  
pp. 303-308 ◽  
Author(s):  
H. Iwata ◽  
T. Hayashi ◽  
H. Sato ◽  
K. Kimura ◽  
T. Kuwayama ◽  
...  

During ovary storage oocytes lose some of their developmental competence. In the present study, we maintained storage solutions of phosphate-buffered saline (PBS) at various temperatures (20 or 35 °C) or supplemented them with magnesium (Mg), raffinose and sucrose. Subsequently, we examined the kinetics of electrolytes in the follicular fluid (FF) during the ovary storage period (9h), the survival rate of granulosa cells in the follicles, and the developmental competence of oocytes after the storage. Lowering the temperature from 35 to 20 °C increased the total cell number of blastocysts that developed at 7 days after in vitro maturation and in vitro fertilization of oocytes. In stock solution with supplements of 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose or sucrose, a significantly higher number of oocytes developed into blastocysts with a large number of cells in each blastocyst, and a significantly higher number of living granulosa cells were obtained as compared with stock solutions without any supplements. During ovary storage, the concentrations of potassium and chloride in the FF were increased, and the addition of Mg to the stock solution increased the concentration of Mg in the FF. Germinal vesicle breakdown in oocytes that were collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM of raffinose occurred at a slower rate than that in oocytes collected from ovaries stored in PBS alone. On the other hand, the oocytes collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose reached the metaphase II (MII) stage more rapidly than the oocytes collected from ovaries stored in the PBS alone. In conclusion, the modification of stock solution by the addition of Mg and raffinose improved the developmental competence of oocytes obtained from ovaries preserved for a long period.


Reproduction ◽  
2007 ◽  
Vol 134 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Wei Shen ◽  
Lan Li ◽  
Zhaodai Bai ◽  
Qingjie Pan ◽  
Mingxiao Ding ◽  
...  

Little is known about the mechanisms underlying primordial follicular formation and the acquisition of competence to resume meiosis by growing oocytes. It is therefore important to establish anin vitroexperimental model that allows one to study such mechanisms. Mouse follicular development has been studiedin vitroover the past several years; however, no evidence has been presented showing that mature oocytes can be obtained from mouse fetal germ cells prior to the formation of primordial follicles. In this study, a method has been established to obtain mature oocytes from the mouse fetal germ cells at 16.5 days postcoitum (dpc). From the initiation of primordial follicular formation to the growth of early secondary follicles, ovarian tissues from 16.5 dpc fetal mice were culturedin vitrofor 14 days. Subsequently, 678 intact secondary follicles were isolated from 182 mouse fetal ovaries and cultured for 12 days. A total of 141 oocytes inside antral follicles were maturedin vitro, and 102 oocytes underwent germinal vesicle breakdown. We found that 97 oocytes were fertilized and 15 embryos were able to form morula–blastocysts. We also analyzed various genomic imprinting markers and showed that the erasure of genomic imprinting markers in the parental generation was also imposed on the oocytes that developed from fetal germ cells. Our results demonstrate that mouse fetal germ cells are able to form primordial follicles with ovarian cells, and that oocytes within the growing follicles are able to mature normallyin vitro.


Sign in / Sign up

Export Citation Format

Share Document