scholarly journals Ultrastructure and Peripheral Membranes of the Mycetomal Microorganisms of Sitophilus granarius (L.) (Coleoptera)

1966 ◽  
Vol 1 (2) ◽  
pp. 181-186
Author(s):  
I. GRINYER ◽  
A. J. MUSGRAVE

The peripheral membranes of the micro-organisms of the mycetocytes of adult midgut caecae and of larval mycetomes of Sitophilus granarius (L.), GG strain, have been examined with an electron microscope. The majority of the mycetocytes were depleted of intracellular organelles but contained large numbers of mycetomal micro-organisms, most of which exhibited only one peripheral membrane. Some mycetocytes, however, had well-developed ultrastructure and harboured mycetomal micro-organisms which showed two peripheral membranes, namely a cell wall and plasma membrane. Intermediate conditions also occurred. It is suggested that the absence of host-provided membranes around the micro-organisms categorizes them as obligate symbiotes.

1972 ◽  
Vol 18 (1) ◽  
pp. 93-96 ◽  
Author(s):  
S. E. Read ◽  
R. W. Reed

The replicative events of a virulent phage (A25) infection of a group A Streptococcus (T253) were studied using the electron microscope. The first intracellular evidence of phage replication in a cell occurred 30 min after infection with arrest of cell division and increase in the nucleic acid pool. Phage heads were evident in the nucleic acid pool of the cells 45 min after infection. Release of phages occurred by splitting of the cell wall along discrete lines. This appeared to be at sites of active wall synthesis, i.e., near the region of septum formation. Many phage components were released but relatively few complete phages indicating a relatively inefficient replicative system.


Author(s):  
Armine Sefton

Bacterial infections and infestations of man can be caused by both microbes and non-microbes. Microbes include bacteria, viruses, fungi, and protozoa. Non-microbes include worms, insects, and arachnids. This chapter concentrates on the basic biology of bacteria. A pathogen is an organism that is able to cause disease in its host and the pathogenicity of any organism is its ability to produce disease. Microbes express their pathogenicity by means of their virulence. The virulence of any pathogen is determined by any of its structural, biochemical, or genetic features that enable it to cause disease in the host. The relationship between a host and a potential pathogen is non- static; the likelihood of any pathogen causing disease in its host depends both on the virulence of the pathogen and the degree of resistance or susceptibility of the host, due mainly to the effectiveness of the host’s defence mechanisms. Two of the main factors influencing a bacteria’s pathogenicity are its ability to invade and it ability to produce toxins—either exotoxins or endotoxins. Bacteria are unicellular prokaryotic micro-organisms, unlike human cells, which are eukaryotic. Fungi, protozoa, helminths, and arthropods are also eukaryotic. Prokaryotic organisms contain both DNA and RNA, but their genetic material exists unbound in the cytoplasm of the cell as, unlike eukaryotic cells, they have no nuclear membrane. Sometimes bacteria contain additional smaller circular DNA molecules, called plasmids. The main features of a bacterium are the cell wall, cytoplasm, and cell membrane. However, some bacteria have additional features such as spores, capsules, fimbriae (pili), and flagellae. The construction of the cell wall is different in different bacteria, but all cell walls contain peptidoglycan. The structure of the cell wall determines the staining characteristics when stained using the Gram stain. Although its first use was over a hundred and fifty years ago, is still the standard method for primary classification of bacteria. Occasionally, bacteria do not have a cell wall. Gram staining of a fixed smear of bacteria is used to separate bacteria into Gram positive or Gram negative, and also to demonstrate their shape. Bacteria with a thick peptidoglycan layer but with no outer membrane stain purple and are called Gram positive.


1986 ◽  
Vol 32 (9) ◽  
pp. 703-710 ◽  
Author(s):  
Terry J. Beveridge ◽  
Girish B. Patel ◽  
Bob J. Harris ◽  
G. Dennis Sprott

Methanothrix concilii strain GP6 consists of a chain of rod-shaped cells, ca. 2.5 μm in length and 0.8 μm in width, which are encased in a tubular proteinaceous sheath. The sheath is composed of annular hoops, ca. 8.0 nm wide and 9.0 nm thick, which are stacked together to form the tube. The ends of the sheath, and therefore the cell filament, are blocked by single, multilayered, 13.5 nm thick, circular plates, designated as "spacer plugs," which contain a series of concentric rings; these also separate the individual cells within each filament. Each cell is therefore bounded by a tubular section of sheath and two spacer plugs. Completely encapsulating each cell, and lying between the sheath and cell, is an amorphous granular matrix. Overlying the plasma membrane and surrounding each protoplast is a thin veil of material which resembles a cell wall, but which is unable to maintain the rod shape when cells are extruded from the sheath.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (10) ◽  
pp. 27-31 ◽  
Author(s):  
David Boal

Despite a variety of shapes and sizes, the generic mechanical structure of cells is remarkably similar from one cell type to the next. All cells are bounded by a plasma membrane, a fluid sheet that controls the passage of materials into and out of the cell. Plant cells and bacteria reinforce this membrane with a cell wall, permitting the cell to operate at an elevated osmotic pressure. Simple cells, such as the bacterium shown in Figure 1a, possess a fairly homogeneous interior containing the cell's genetic blueprint and protein workhorses, but no mechanical elements. In contrast, as can be seen in Figure 1b, plant and animal cells contain internal compartments and a filamentous cytoskeleton—a network of biological ropes, cables, and poles that helps maintain the cell's shape and organize its contents.Four principal types of filaments are found in the cytoskeleton: spectrin, actin, microtubules, and a family of intermediate filaments. Not all filaments are present in all cells. The chemical composition of the filaments shows only limited variation from one cell to another, even in organisms as diverse as humans and yeasts. Membranes have a more variable composition, consisting of a bi-layer of dual-chain lipid molecules in which are embedded various proteins and frequently a moderate concentration of cholesterol. The similarity of the cell's mechanical elements in chemical composition and physical characteristics encourages us to search for universal strategies that have developed in nature for the engineering specifications of the cell. In this article, we concentrate on the cytoskeleton and its filaments.


1983 ◽  
Vol 61 (4) ◽  
pp. 1266-1275 ◽  
Author(s):  
Susette C. Mueller ◽  
Gordon A. Maclachlan

Radioautographic experiments were carried out using pea stem slices to determine the site of glucose incorporation from UDP-glucose. Cut or damaged pea stem cells were the only cells to incorporate [3H]glucose from UDP-[3H]glucose. The product formed at 20 μM UDP-glucose was observed in electron microscope thin sections in patches on the plasma membrane and the cell wall. The product formed at 5 mM UDP-glucose occurred in fibrillar bundles that stretched between the plasma membrane and the cell wall. This periplasmic material fluoresced when stained with aniline blue. Experiments in which slices were subjected to sequential incubations in radioactive 5 mM UDP-glucose followed by unlabelled 5 mM UDP-glucose, or incubations in the reverse order, indicated that incorporation of [3H]glucose into products insoluble in chloroform:methanol:water or hot water occurs at the plasma membrane, and radioactivity is displaced from the membrane by subsequent incubations. A similar experiment, in which slices were first incubated in radioactive 20 μM UDP-glucose followed by unlabelled 5 mM UDP-glucose, indicated that the synthesis of fibrillar material from 5 mM UDP-glucose displaces the labelled product that had been formed from 20 μM UDP-glucose. It is concluded that only cut or damaged pea stem cells utilize UDP-glucose and the plasma membrane enzymes that incorporate [3H]glucose from 20 μM or 5 mM UDP-[3H]glucose are in close physical proximity.


1994 ◽  
Vol 14 (7) ◽  
pp. 4825-4833 ◽  
Author(s):  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

Saccharomyces cerevisiae alpha-agglutinin is a cell wall-anchored adhesion glycoprotein. The previously identified 140-kDa form, which contains a glycosyl-phosphatidylinositol (GPI) anchor (D. Wojciechowicz, C.-F. Lu, J. Kurjan, and P. N. Lipke, Mol. Cell. Biol. 13:2554-2563, 1993), and additional forms of 80, 150, 250 to 300, and > 300 kDa had the properties of intermediates in a transport and cell wall anchorage pathway. N glycosylation and additional modifications resulted in successive increases in size during transport. The 150- and 250- to 300-kDa forms were membrane associated and are likely to be intermediates between the 140-kDa form and a cell surface GPI-anchored form of > 300 kDa. A soluble form of > 300 kDa that lacked the GPI anchor had properties of a periplasmic intermediate between the plasma membrane form and the > 300-kDa cell wall-anchored form. These results constitute experimental support for the hypothesis that GPI anchors act to localize alpha-agglutinin to the plasma membrane and that cell wall anchorage involves release from the GPI anchor to produce a periplasmic intermediate followed by linkage to the cell wall.


1967 ◽  
Vol 35 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Jack L. Pate ◽  
Erling J. Ordal

An electron microscope study of the myxobacterium Chondrococcus columnaris has revealed the following structures in the peripheral layers of the cells: (1) a plasma membrane, (2) a single dense layer (probably the mucopeptide component of the cell wall), (3) peripheral fibrils, (4) an outer membrane, and (5) a material coating the surfaces of the cells which could be stained with the dye ruthenium red.The ruthenium red-positive material is probably an acid mucopolysaccharide and may be involved in the adhesive properties of the cells. The outer membrane and plasma membrane both have the appearance of unit membranes: an electron-translucent layer sandwiched between two electron-opaque layers. The peripheral fibrils span the gap between the outer membrane and the mucopeptide layer, a distance of about 100 A, and run parallel to each other along the length of the cell. The fibrils appear to be continuous across the ends of the cells. The location of these fibrillar structures suggests that they may play a role in the gliding motility of these bacteria.


2003 ◽  
Vol 162 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Mitsuhiro Abe ◽  
Hiroshi Qadota ◽  
Aiko Hirata ◽  
Yoshikazu Ohya

Rho1p, an essential Rho-type GTPase in Saccharomyces cerevisiae, activates its effectors in the GTP-bound form. Here, we show that Rho1p in secretory vesicles cannot activate 1,3-β-glucan synthase, a cell wall synthesizing enzyme, during vesicular transport to the plasma membrane. Analyses with an antibody preferentially reacting with the GTP-bound form of Rho1p revealed that Rho1p remains in the inactive form in secretory vesicles. Rom2p, the GDP/GTP exchange factor of Rho1p, is preferentially localized on the plasma membrane even when vesicular transport is blocked. Overexpression of Rom2p results in delocalization of Rom2p and accumulation of 1,3-β-glucan in secretory vesicles. Based on these results, we propose that Rho1p is kept inactive in intracellular secretory organelles, resulting in repression of the activity of the cell wall–synthesizing enzyme within cells.


1994 ◽  
Vol 14 (7) ◽  
pp. 4825-4833
Author(s):  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

Saccharomyces cerevisiae alpha-agglutinin is a cell wall-anchored adhesion glycoprotein. The previously identified 140-kDa form, which contains a glycosyl-phosphatidylinositol (GPI) anchor (D. Wojciechowicz, C.-F. Lu, J. Kurjan, and P. N. Lipke, Mol. Cell. Biol. 13:2554-2563, 1993), and additional forms of 80, 150, 250 to 300, and > 300 kDa had the properties of intermediates in a transport and cell wall anchorage pathway. N glycosylation and additional modifications resulted in successive increases in size during transport. The 150- and 250- to 300-kDa forms were membrane associated and are likely to be intermediates between the 140-kDa form and a cell surface GPI-anchored form of > 300 kDa. A soluble form of > 300 kDa that lacked the GPI anchor had properties of a periplasmic intermediate between the plasma membrane form and the > 300-kDa cell wall-anchored form. These results constitute experimental support for the hypothesis that GPI anchors act to localize alpha-agglutinin to the plasma membrane and that cell wall anchorage involves release from the GPI anchor to produce a periplasmic intermediate followed by linkage to the cell wall.


Sign in / Sign up

Export Citation Format

Share Document