Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies

1993 ◽  
Vol 104 (3) ◽  
pp. 793-803 ◽  
Author(s):  
P.A. Underwood ◽  
J.G. Steele ◽  
B.A. Dalton

The conformation and biological activities of fibronectin (FN) and vitronectin (VN) coated on different plastic surfaces were investigated using cell adhesion and a panel of domain-specific monoclonal antibodies (mAbs). The adhesion of BHK fibroblasts was markedly better on FN coated on hydrophilic tissue culture polystyrene (TCPS) than on hydrophobic, untreated polystyrene (PS). mAbs A17 and 3E3, which inhibit the binding of BHK cells to the RGD-containing sequence within the cell binding region of FN, also bound preferentially to FN on TCPS. In contrast, two anti-FN mAbs, which have no effect on cell adhesion (A35 and A3), bound preferentially to the conformation of FN on the more hydrophobic PS. Mouse melanoma cells utilise an additional cell-binding site in the Hep II domain of FN and their preference for FN coated on TCPS was less marked than that of BHK cells. This reduced preference was again mimicked by the binding of a mAb, A32, which inhibits the binding of B16 cells to the Hep II domain of FN. In contrast, BHK cell adhesion to VN did not display a preference for TCPS over PS. The cell-binding activity of adsorbed VN was matched by the binding of a cell adhesion-inhibitory mAb, A18, which, unlike mAbs A17 and A32, displayed slightly increased binding to VN coated on PS, rather than TCPS. When the denaturating effect of coating FN and VN to PS in the presence of urea was investigated, similar correlations between BHK cell adhesion and the binding of inhibitory mAbs were observed. Urea treatment of FN significantly reduced both BHK cell adhesion and the binding of both cell adhesion-inhibitory mAbs, whereas the binding of A35 and A3 was unaffected. There was no significant effect of urea treatment of VN upon either BHK cell adhesion or mAb binding. A larger panel of anti-FN mAbs was used, together with the anti-VN mAbs, to determine whether there were differences in mAb recognition of FN and VN adsorbed on three different brands of TCPS. The mAbs segregated into four reactivity patterns, of which A17, A32, A35 and A18 respectively were representative. Significant differences were observed in mAb recognition of FN and VN adsorbed to different brands of TCPS. These may reflect differences in the ability of these surfaces to support optimal growth of different cell types. The effect of divalent cations upon adsorbed FN and VN was also investigated.(ABSTRACT TRUNCATED AT 400 WORDS)

1988 ◽  
Vol 90 (2) ◽  
pp. 201-214 ◽  
Author(s):  
F. Grinnell ◽  
C.H. Ho ◽  
T.L. Tuan

In this report we describe cell adhesion and phagocytosis promoted by two monoclonal antibodies that were selected for immunofluorescence staining of non-permeabilized baby hamster kidney (BHK) cells. Anti-BHK1 staining was heaviest along cell margins, whereas anti-BHK2 staining was continuous along cell margins. Neither antibody stained elongated plaque structures such as were observed when cells were reacted with antibodies to fibronectin (FN) receptors. The monoclonal antibodies functioned as adhesion ligands in four different assays: attachment to culture dishes, spreading, binding of latex beads and phagocytosis. Anti-BHK1 and anti-BHK2 promoted attachment to culture dishes similarly, but anti-BHK2 was more effective at promoting cell spreading. Antibody-promoted cell spreading was inhibited by the peptides Ser-Asp-Gly-Arg and Gly-Arg-Gly-Asp-Ser-Pro but not by other, related, peptides tested. The monoclonal antibodies also promoted binding of latex beads, and the bead binding sites were motile, on the basis of their ‘capping’ response. Nevertheless, anti-BHK2 beads were phagocytosed by cells 5- to 20-fold more efficiently than anti-BHK1 beads. The binding sites for anti-BHK1 and anti-BHK2 were characterized by immunoprecipitation experiments. Anti-BHK1 binding sites contained 50K (K = 10(3) Mr) and 88K components under non-reducing conditions that migrated as a 51/53K doublet and a 93K component under reducing conditions. On the other hand, anti-BHK2 binding sites contained 88K and 110K components under non-reducing conditions that shifted to apparent 107K and 128K values when measured under reducing conditions.


1990 ◽  
Vol 97 (2) ◽  
pp. 239-246
Author(s):  
J.L. Holton ◽  
T.P. Kenny ◽  
P.K. Legan ◽  
J.E. Collins ◽  
J.N. Keen ◽  
...  

The N-terminal sequence of a mixture of desmosomal glycoproteins 2 and 3 (dg2/3, desmocollins) from bovine nasal epidermis, prepared by electro-elution from polyacrylamide gels, was determined by solid-phase Edman degradation. A sequence of 23 amino acids was obtained. This showed 43% identity with that of the N terminus of the calcium-dependent cell adhesion molecule, N-cadherin. A lesser degree of identity with other members of the cadherin-uvomorulin-L-CAM family was also found. In order to confirm that the sequence was derived from the dg2/3 molecules a rabbit antiserum was raised against a synthetic peptide corresponding to the sequence, conjugated to keyhole limpet haemocyanin (KLH). The antiserum obtained showed high (titre) activity against both the peptide and KLH in ELISA. Each activity could be specifically adsorbed with the appropriate ligand. The antiserum reacted specifically with both dg2 and dg3 of bovine nasal epidermis on immunoblots, this binding was blocked by the N-terminal peptide but was unaffected by KLH. The identity of dg2 and -3 in these preparations was confirmed by immunoblotting with two monoclonal antibodies and one polyclonal antiserum raised against the whole molecules. The N-terminal peptide antiserum was shown to bind to the intercellular space of desmosome profiles by immunoelectron microscopy on ultra-thin frozen sections. One of the two monoclonal antibodies (07–4D) also reacted with the desmosomal intercellular space. dg2 and -3 were shown by Staphylococcus aureus V8 protease digestion to have identical one-dimensional peptide maps. Both the N-terminal antiserum and 07–4D reacted with a V8 fragment of 19,000 Mr derived from dg2 and dg3.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 112 (4) ◽  
pp. 579-587 ◽  
Author(s):  
D. Nath ◽  
P.M. Slocombe ◽  
P.E. Stephens ◽  
A. Warn ◽  
G.R. Hutchinson ◽  
...  

Metargidin (ADAM-15) is a type I transmembrane glycoprotein belonging to the ADAM (A Disintegrin and Metalloprotease Domain) family of proteins and is widely expressed in different tissues and cell types. Members of this family contain an amino-terminal metalloprotease domain followed by a disintegrin domain, a cysteine-rich region and a membrane proximal EGF-like domain. The disintegrin domain of metargidin contains an RGD tripeptide sequence, suggesting that it may potentially interact with the integrin family of proteins. Here we identify integrin ligands for metargidin on haemopoietic cells, by using a chimeric protein containing the extracellular domain of metargidin fused to the Fc portion of human IgG. Binding activity to a panel of human cell lines was analysed by solid-phase cell-adhesion assays. Metargidin bound to a monocytic cell line, U937, and a T cell line, MOLT-4, in a specific manner. Adhesion was divalent cation- and temperature- dependent and strongly enhanced by Mn2+, all features of integrin-mediated binding. Using a panel of anti-integrin antibodies we show that alphavbeta3 is a ligand for metargidin on U937 cells. In contrast, for MOLT-4 cells, the integrin alpha5beta1 contributes to cell binding. Adhesion was mediated by the disintegrin domain of metargidin as RGD-based peptides inhibited cell binding to both cell lines. The specificity of the interaction between both alphavbeta3 and alpha5beta1 and metargidin was further confirmed by solid-phase adhesion assays using purified recombinant integrins. These results together indicate that metargidin can function as a cell adhesion molecule via interactions with alphavbeta3 and alpha5beta1 integrins.


1990 ◽  
Vol 172 (1) ◽  
pp. 69-75 ◽  
Author(s):  
K Miyake ◽  
C B Underhill ◽  
J Lesley ◽  
P W Kincade

A cell adhesion model was previously used to select a series of monoclonal antibodies (mAbs), which were subsequently found to recognize CD44/Pgp-1. Interest in these reagents increased with the finding that they totally inhibited production of lymphoid or myeloid cells in long-term bone marrow cultures. Further investigation has now revealed that hyaluronate is a potential ligand for CD44 and that hyaluronate recognition accounts for the adhesion between B lineage hybridoma and stromal cells. The hybridoma cells adhered to hyaluronate-coated plastic wells as well as to monolayers of stromal cells. The adhesion in both cases was inhibited by treatment with hyaluronidases, and did not require divalent cations. Addition of exogenous hyaluronate also diminished binding of lymphoid cells to stromal cells. One of several mAbs to Pgp-1/CD44 was particularly effective at blocking these interactions. Since hyaluronate and Pgp-1/CD44 were present on both cell types, experiments were done to determine the cellular location of interacting molecules required for the adhesion process. Treatment of lymphoid cells with an anti-Pgp-1/CD44 antibody was more inhibitory than antibody treatment of the stromal cells. Conversely, hyaluronidase treatment of stromal cells reduced subsequent binding more than treatment of the lymphoid cells. Adhesive interactions that involve hyaluronate and CD44 could contribute to a number of cell recognition processes, including ones required for normal lympho-hemopoiesis.


2006 ◽  
Vol 281 (43) ◽  
pp. 32156-32163 ◽  
Author(s):  
James R. Whiteford ◽  
John R. Couchman

Syndecans are cell surface proteoglycans involved in cell adhesion and motility. Syndecan-4 is an important component of focal adhesions and is involved in cytoskeletal reorganization. Previous work has shown that the syndecan-4 ectodomain can support cell attachment. Here, three vertebrate syndecan-4 ectodomains were compared, including that of the zebrafish, and we have demonstrated that the cell binding activity of the syndecan-4 ectodomain is conserved. Cell adhesion to the syndecan-4 ectodomain appears to be a characteristic of mesenchymal cells. Comparison of syndecan-4 ectodomain sequences led to the identification of three conserved regions of sequence, of which the NXIP motif is important for cell binding activity. We have shown that cell adhesion to the syndecan-4 ectodomain involves β1 integrins in several cell types.


1990 ◽  
Vol 110 (6) ◽  
pp. 2145-2155 ◽  
Author(s):  
A Sonnenberg ◽  
C J Linders ◽  
P W Modderman ◽  
C H Damsky ◽  
M Aumailley ◽  
...  

The involvement of integrins in mediating interaction of cells to well-characterized proteolytic fragments (P1, E3, and E8) of laminin was assessed by antibody blocking studies. Cell adhesion to fragment P1 was affected by mAbs against the integrin beta 1 and beta 3 subunits and furthermore could be prevented completely by a synthetic peptide containing the Arg-Gly-Asp sequence. Because the beta 3 antibody-sensitive cell lines expressed the vitronectin receptor (alpha v beta 3) at high levels, the involvement of this receptor in cell adhesion to P1 is strongly suggested. Integrin-mediated cell adhesion to E3 is of low affinity and was inhibited by antibodies against the integrin beta 1 subunit. In contrast, adhesion of some cell types to E3 was not or only partially sensitive to inhibition by anti-integrin subunit antibodies. Cell adhesion to E8 was blocked completed by integrin alpha 6 or beta 1 antibodies. The alpha 6-specific antibody did not inhibit cell adhesion to E3 or P1. Furthermore, the antibody only blocked adhesion to laminin of those cells that adhered exclusively to the E8 fragment. In addition, expression of alpha 6 beta 1 was closely correlated with the ability of cells to bind to the E8 fragment of laminin. These results indicate that the alpha 6 beta 1 integrin is a specific receptor for the E8 fragment of laminin. Many cell types expressed, instead of or in addition to alpha 6 beta 1 the recently described integrin alpha 6 beta 4. Although the ligand of alpha 6 beta 4 was not identified, it must be different from that of alpha 6 beta 1, because cells that express alpha 6 beta 4, but not alpha 6 beta 1, do not adhere to E8, and cell adhesion to E8 was specifically blocked by beta 1 specific antibodies. In conclusion, the data indicate that distinct integrin receptors belonging to the beta 1 or beta 3 subfamily are involved in adhesion of cells to the various laminin fragments. Adhesion to E3 may also be brought about by other receptor molecules, possibly proteoglycans, not belonging to the integrin family.


1988 ◽  
Vol 36 (2) ◽  
pp. 205-212 ◽  
Author(s):  
M Gramzow ◽  
H C Schröder ◽  
G Uhlenbruck ◽  
R Batel ◽  
W E Müller

The aggregation factor (AF) from the sponge Geodia cydonium is known to be a complex proteinaceous particle, composed of a series of different (glyco)proteins (Mr lower than 150,000) around a 90S sunburst-like core structure. One of the low-Mr proteins is the 47-KD cell binding fragment. We describe a new monoclonal antibody (mAb), III1E6, raised against purified AF particles, which recognizes in tissue slices structures present both on the plasma membrane and in a network-like manner in the extracellular space. By applying immunoelectron microscopical, immunoblotting, and immunoaffinity chromatographical techniques, the mAb III1E6 was shown to recognize the core structure of the AF particle. Cell adhesion studies revealed that the mAb does not inhibit AF mediated cell-cell adhesion but abolishes AF-caused attachment of cells to collagen. Electron microscopic data show that III1E6 prevents association of AF particles with collagen fibrils. By applying the techniques of immunoblotting and of protein-protein recognition on the solid phase in vitro, we could formulate the following series of events: the AF particle recognizes, with its 47-KD cell binding fragment, the aggregation receptor protein in the plasma membrane and with its core structure the collagen fibrils. These fibrils interact optionally, either via the same route or via the collagen assembly factor, with an adjacent cell surface. These findings demonstrate that the AF particle is not only the key molecule for cell-cell adhesion but also a component of cell-matrix interactions.


1989 ◽  
Vol 109 (2) ◽  
pp. 927-937 ◽  
Author(s):  
L J Picker ◽  
M Nakache ◽  
E C Butcher

A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non-lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those of lymphocyte homing receptors suggests that these glycoproteins represent a novel type of cell adhesion/recognition molecule (H-CAM) potentially mediating cell-cell or cell-matrix interactions in multiple tissues.


2013 ◽  
Vol 289 (3) ◽  
pp. 1467-1477 ◽  
Author(s):  
Pearl Lee ◽  
Daniel V. Bax ◽  
Marcela M. M. Bilek ◽  
Anthony S. Weiss

Tropoelastin protein monomers assemble to form elastin. Cellular integrin αVβ3 binds RKRK at the C-terminal tail of tropoelastin. We probed cell interactions with tropoelastin by deleting the RKRK sequence to identify other cell-binding interactions within tropoelastin. We found a novel human dermal fibroblast attachment and spreading site on tropoelastin that is located centrally in the molecule. Inhibition studies demonstrated that this cell adhesion was not mediated by either elastin-binding protein or glycosaminoglycans. Cell interactions were divalent cation-dependent, indicating integrin dependence. Function-blocking monoclonal antibodies revealed that αV integrin(s) and integrin αVβ5 specifically were critical for cell adhesion to this part of tropoelastin. These data reveal a common αV integrin-binding theme for tropoelastin: αVβ3 at the C terminus and αVβ5 at the central region of tropoelastin. Each αV region contributes to fibroblast attachment and spreading, but they differ in their effects on cytoskeletal assembly.


1998 ◽  
Vol 79 (01) ◽  
pp. 104-109 ◽  
Author(s):  
Osamu Takamiya

SummaryMurine monoclonal antibodies (designated hVII-B101/B1, hVIIDC2/D4 and hVII-DC6/3D8) directed against human factor VII (FVII) were prepared and characterized, with more extensive characterization of hVII-B101/B1 that did not bind reduced FVIIa. The immunoglobulin of the three monoclonal antibodies consisted of IgG1. These antibodies did not inhibit procoagulant activities of other vitamin K-dependent coagulation factors except FVII and did not cross-react with proteins in the immunoblotting test. hVII-DC2/D4 recognized the light chain after reduction of FVIIa with 2-mercaptoethanol, and hVIIDC6/3D8 the heavy chain. hVII-B101/B1 bound FVII without Ca2+, and possessed stronger affinity for FVII in the presence of Ca2+. The Kd for hVII-B101/B1 to FVII was 1.75 x 10–10 M in the presence of 5 mM CaCl2. The antibody inhibited the binding of FVII to tissue factor in the presence of Ca2+. hVII-B101/B1 also inhibited the activation of FX by the complex of FVIIa and tissue factor in the presence of Ca2+. Furthermore, immunoblotting revealed that hVII-B101/B1 reacted with non-reduced γ-carboxyglutaminic acid (Gla)-domainless-FVII and/or FVIIa. hVII-B101/B1 showed a similar pattern to that of non-reduced proteolytic fragments of FVII by trypsin with hVII-DC2/D4 on immunoblotting test. hVII-B101/B1 reacted differently with the FVII from the dysfunctional FVII variant, FVII Shinjo, which has a substitution of Gln for Arg at residue 79 in the first epidermal growth factor (1st EGF)-like domain (Takamiya O, et al. Haemosta 25, 89-97,1995) compared with normal FVII, when used as a solid phase-antibody for ELISA by the sandwich method. hVII-B101/B1 did not react with a series of short peptide sequences near position 79 in the first EGF-like domain on the solid-phase support for epitope scanning. These results suggested that the specific epitope of the antibody, hVII-B101/B1, was located in the three-dimensional structure near position 79 in the first EGF-like domain of human FVII.


Sign in / Sign up

Export Citation Format

Share Document