Functional partitioning of beta1 integrins revealed by activating and inhibitory mAbs

1997 ◽  
Vol 110 (21) ◽  
pp. 2647-2659 ◽  
Author(s):  
M.T. Cruz ◽  
C.L. Dalgard ◽  
M.J. Ignatius

Integrins exist in different activation states on the surfaces of cells. Addition of the proper signal, ligand, or antibody can alter the activation state of these molecules. We report here the identification of two immunocytochemically distinct populations of beta1 integrins on fixed embryonic chick dermal fibroblasts. One population, recognized by the integrin activating mAb TASC, localizes to discrete regions of the cell, most likely focal contacts. These integrins co-localize with other proteins, such as vinculin and F-actin, and their retention at these sites is dependent on the actin cytoskeleton. The other population, identified with the inhibitory mAb W1B10, is more evenly distributed throughout the cell surface, and its pattern remains unchanged after disruption of the actin cytoskeleton. Double labeling experiments using Fab fragments of TASC alongside whole W1B10 IgG revealed non-overlapping staining patterns. These results show that it is possible to visualize and study discrete populations of integrins on cell surfaces using two different antibodies. We hypothesize that these antibodies report differences in the distribution of receptors in two different states. A model is proposed describing the ligand independent recruitment of integrins based on these findings and results from other labs.

2002 ◽  
Vol 115 (12) ◽  
pp. 2581-2590 ◽  
Author(s):  
Françoise Coussen ◽  
Daniel Choquet ◽  
Michael P. Sheetz ◽  
Harold P. Erickson

Previous studies have shown that small beads coated with FN7-10, a four-domain cell adhesion fragment of fibronectin, bind to cell surfaces and translocate rearward. Here we investigate whether soluble constructs containing two to five FN7-10 units might be sufficient for activity. We have produced a monomer, three forms of dimers, a trimer and a pentamer of FN7-10,on the end of spacer arms. These oligomers could bind small clusters of up to five integrins. Fluorescence microscopy showed that the trimer and pentamer bound strongly to the cell surface, and within 5 minutes were prominently localized to actin fiber bundles. Monomers and dimers showed only diffuse localization. Beads coated with a low concentration (probably one complex per bead) of trimer or pentamer showed prolonged binding and rearward translocation, presumably with the translocating actin cytskeleton. Beads containing monomer or dimer showed only brief binding and diffusive movements. We conclude that clusters of three integrin-binding ligands are necessary and sufficient for coupling to and translocating with the actin cytoskeleton.


1972 ◽  
Vol 53 (2) ◽  
pp. 435-449 ◽  
Author(s):  
Irving Goldschneider ◽  
A. A. Moscona

With the use of antisera prepared in rabbits against suspensions of live embryonic chick tissue cells, qualitative differences in cell surface antigens were demonstrated on cells from different embryonic chick tissues by immune agglutination and immunofluorescence. Unabsorbed antisera reacted with both homologous and nonhomologous cells; thorough absorption of the antisera with heterologous tissues removed cross-reacting antibodies, and the antisera acquired a high degree of tissue specificity. Thus, antiretina cell serum absorbed with nonretina cells or tissues, agglutinated only neural retina cells, and was shown by immunofluorescence tests to react specifically with the surface of retina cells, both in cell suspensions and in frozen tissue sections. Comparable results with antisera against cells from embryonic liver and other tissues demonstrated the existence of tissue-specific, phenotypic disparities in the antigenicities of embryonic cell surfaces, in addition to the presence of cell-surface antigens shared by certain classes of cells, and of antigens common to all cells in the embryo. The results are discussed in terms of the possible involvement of such phenotypic determinants in the specification of cell surfaces, in relation to cell recognition and developmental interactions.


Development ◽  
1974 ◽  
Vol 32 (3) ◽  
pp. 603-617
Author(s):  
Yanagi Tadano ◽  
Masashi Tadano

In an attempt to explain the determination mechanism of embryonic polarity, the relation between the behaviour of ectoplasm and the turning of the P2-cell in embryo sof Parascaris equorum, Rhabditis ikedai and Rhabditis sp., has been studied by means of centrifugation. During cleavage of uncentrifuged eggs, extension and contraction of the cell-surface occur. These are accompanied by streaming of the ectoplasm. In the early phase of the second cleavage embryos become T-shape. Along with streaming of ectoplasm at the animal side of S2-cell in the later phase, the surface of S2-cell extends on one side and contracts on the other. Successively, P2-cell turns from the extending side of S2-cell to the contracting one, that is, in the direction of the primary streaming of ectoplasm. Thus, the embryos become rhomboidal in shape and their axes are established. The extended side of S2-cell points roughly to the ventral side of the embryo, and the other to the dorsal. In the centrifuged embryos, extension and contraction of cell-surfaces and turning of P2-cell take place also accompanied by streaming of the ectoplasm at the centrifugal side of S2-cell. It is concluded from these facts that the determination of embryonic polarity depends on the turning of the P2-cell by the extension and the contraction of the surfaces of S2-cell and that the direction of this turning depends on that of the primary streaming of ectoplasm in S2-cell. It is assumed that the direction of the streaming is due to the migration of the nucleus, and that the extension and contraction of cell-surfaces is based on the beaviour of the e.r. and microtubules in the ectoplasm. The tetrahedral embryo is caused by a change in the streaming of ectoplasm. The formation of a rhomboidal embryo inRhabditis without a preceding T-stage is discussed in connection with the behaviour of the ectoplasm.


1973 ◽  
Vol 56 (3) ◽  
pp. 636-646 ◽  
Author(s):  
Jane Overton

In the corneal epithelium of the embryonic chick there is a 3- to 4-fold increase in desmosomes between the 15th and 16th days of incubation which has not been noted in earlier studies of this tissue. This finding has made it feasible to study the effects of the local cell environment on desmosome formation. Cells of 15-day corneas which were forming desmosomes rapidly, were dispersed and combined in culture with cells from 10-day corneas which were forming few desmosomes. Surfaces of the same 15-day cell which were confronted with either another 15-day cell or a 10-day cell were compared. Desmosomes formed preferentially on the surface adjacent to a like cell. When 15-day cells were confronted with pigment cells, desmosomes formed almost exclusively on the surface adjacent to a like cell. Evidence for such localized differences on the same cell surface emphasize the importance of the immediate cell environment in desmosome formation. The observation that single desmosome plaques form occasionally on lateral cell surfaces has been noted previously. This finding was confirmed.


1984 ◽  
Vol 99 (5) ◽  
pp. 1743-1753 ◽  
Author(s):  
A Woods ◽  
M Höök ◽  
L Kjellén ◽  
C G Smith ◽  
D A Rees

The distribution of heparan sulfate proteoglycans (HSPG) on cultured fibroblasts was monitored using an antiserum raised against cell surface HSPG from rat liver. After seeding, HSPG was detected by immunofluorescence first on cell surfaces and later in fibrillar deposits of an extracellular matrix. Cell surface HSPG aligned with microfilament bundles of rat embryo fibroblasts seen by phase-contrast microscopy but was diffuse on transformed rat dermal fibroblasts (16C cells) which lack obvious stress fibers. Focal adhesions isolated from either cell type and monitored by interference reflection microscopy showed a concentration of HSPG labeling with respect to the rest of the membrane. Increased labeling in these areas was also seen for fibronectin (FN) by using an antiserum that detects both plasma and cell-derived FN. Double immunofluorescent staining of fully adherent rat embryo fibroblast cells showed some co-distribution of HSPG and FN, and this was confirmed by immunoelectron microscopy, which detected HSPG at localized areas of dorsal and ventral cell membranes, overlapping cell margins, and in the extracellular matrix. During cell shape changes on rounding and spreading, HSPG and FN may not co-distribute. Double labeling for actin and either HSPG or FN showed a closer correlation of actin with HSPG than with FN. The studies are consistent with HSPG being closely involved in a transmembrane cytoskeletal-matrix interaction; the possibility that HSPG coordinates the deposition of FN and other matrix components with cytoskeletal organization is discussed.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2020 ◽  
Vol 11 (16) ◽  
pp. 4221-4225 ◽  
Author(s):  
Jing Qi ◽  
Weishuo Li ◽  
Xiaoling Xu ◽  
Feiyang Jin ◽  
Di Liu ◽  
...  

Cell-surface polymerization of anti-CD20 aptamer modified macromer to induce CD20 receptor clustering, and effectively initiate the apoptotic signals in cells.


Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4746-4753 ◽  
Author(s):  
Samir K. Mandal ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

AbstractTissue factor (TF) is the cellular receptor for clotting factor VIIa (FVIIa). The formation of TF-FVIIa complexes on cell surfaces triggers the activation of coagulation cascade and cell signaling. In the present study, we characterized the subcellular distribution of TF and its transport in fibroblasts by dual immunofluorescence confocal microscopy and biochemical methods. Our data show that a majority of TF resides in various intracellular compartments, predominantly in the Golgi. Tissue factor at the cell surface is localized in cholesterol-rich lipid rafts and extensively colocalized with caveolin-1. FVIIa binding to TF induces the internalization of TF. Of interest, we found that TF-FVIIa complex formation at the cell surface leads to TF mobilization from the Golgi with a resultant increase in TF expression at the cell surface. This process is dependent on FVIIa protease activity. Overall, the present data suggest a novel mechanism for TF expression at the cell surface by FVIIa. This mechanism could play an important role in hemostasis in response to vascular injury by increasing TF activity where and when it is needed.


1994 ◽  
Vol 125 (2) ◽  
pp. 381-391 ◽  
Author(s):  
J Mulholland ◽  
D Preuss ◽  
A Moon ◽  
A Wong ◽  
D Drubin ◽  
...  

We characterized the yeast actin cytoskeleton at the ultrastructural level using immunoelectron microscopy. Anti-actin antibodies primarily labeled dense, patchlike cortical structures and cytoplasmic cables. This localization recapitulates results obtained with immunofluorescence light microscopy, but at much higher resolution. Immuno-EM double-labeling experiments were conducted with antibodies to actin together with antibodies to the actin binding proteins Abp1p and cofilin. As expected from immunofluorescence experiments, Abp1p, cofilin, and actin colocalized in immuno-EM to the dense patchlike structures but not to the cables. In this way, we can unambiguously identify the patches as the cortical actin cytoskeleton. The cortical actin patches were observed to be associated with the cell surface via an invagination of plasma membrane. This novel cortical cytoskeleton-plasma membrane interface appears to consist of a fingerlike invagination of plasma membrane around which actin filaments and actin binding proteins are organized. We propose a possible role for this unique cortical structure in wall growth and osmotic regulation.


Sign in / Sign up

Export Citation Format

Share Document