Cell adhesion to laminin 1 or 5 induces isoform-specific clustering of integrins and other focal adhesion components

1998 ◽  
Vol 111 (6) ◽  
pp. 793-802 ◽  
Author(s):  
D. Dogic ◽  
P. Rousselle ◽  
M. Aumailley

Laminin 1 (alpha1beta1gamma1) and laminin 5 (alpha3beta3gamma2) induce cell adhesion with different involvement of integrins: both are ligands for the alpha6beta1 integrin, while alpha3beta1 integrin has affinity for laminin 5 only. These two laminin isoforms therefore provide good models to investigate whether alpha3beta1 and alpha6beta1 integrins play different roles in signal transduction and in focal adhesion formation. Laminin 1 or 5 induced adhesion of normal human skin fibroblasts to a similar extent but promoted different overall cell shapes. On laminin 1 the fibroblasts formed mainly filopodia-like structures, while on laminin 5 they developed lamellipodias. Staining of fibrillar actin with fluorescein-phalloidin revealed a similar organisation of the actin cytoskeleton on both substrates. However, integrin subunits and several cytoskeletal linker proteins, including vinculin, talin, and paxillin, showed an isoform-specific arrangement into focal adhesions. On laminin 1 they were recruited into thick and short aggregates localized at the termini of actin stress fibers, while on laminin 5 they appeared as dots or streaks clustered on a long portion of actin microfilaments. To test whether the differing affinity of laminin 1 or 5 for alpha3beta1 integrin would explain the formation of morphologically different focal adhesions, cells were seeded on laminin 1 under conditions in which alpha3beta1 integrins were occupied by a function-blocking antibody. This resulted in the formation of focal adhesions similar to that observed on laminin 5, where the integrin is occupied by its natural ligand. These results provide the first evidence for a cross-talk between alpha3beta1 and alpha6beta1 integrins and indicate that occupancy of alpha3beta1 integrins results in a trans-dominant regulation of alpha6beta1 integrin clustering and of focal adhesions. It suggests that recruitment of integrins and cytoskeletal linker proteins are laminin isoform-specific and that tissue specific expression of laminin isoforms might modulate cell behavior by the activation of distinct sets of integrins and by the induction of distinct molecular assemblies within the cell adhesion signaling complexes.

2003 ◽  
Vol 371 (2) ◽  
pp. 565-571 ◽  
Author(s):  
José V. MOYANO ◽  
Alfredo MAQUEDA ◽  
Juan P. ALBAR ◽  
Angeles GARCIA-PARDO

Cell adhesion to fibronectin results in formation of actin stress fibres and focal adhesions. In fibroblasts, this response requires two co-operative signals provided by interactions of the RGD sequence with α5β1 integrin and the heparin-binding domain II (Hep II) domain with syndecan-4. Within Hep II, this activity was mapped to repeat III13 and to the peptide FN-C/H-V(WQPPRARITGY, repeat III14). We previously described that the synthetic heparin-binding peptide/III5 (HBP/III5) (WTPPRAQITGYRLTVGLTRR, repeat III5) binds heparin and mediates cell adhesion via chondroitin sulphate proteoglycans. We have now studied whether HBP/III5 co-operates with α5β1 and drives a full cytoskeletal response in melanoma cells. SKMEL-178 cells attached and spread on the RGD-containing FNIII7–FNIII10 (FNIII7–10) fragment, but did not form stress fibres or focal adhesions. Co-immobilization of HBP/III5 with FNIII7–10 or adding soluble HBP/III5 to cells prespread on FNIII7–10, effectively induced these structures. Cell transfection with dominant-negative N19RhoA, a member of the small GTPase family, abolished the HBP/III5 effect. Both chondroitinase and heparitinase diminished focal adhesions, indicating that both types of proteoglycans bound HBP/III5 in melanoma cells. We have mapped the active sequence of HBP/III5 to YRLTVGLTRR, which is a novel sequence in fibronectin with focal-adhesion-promoting activity. The last two arginine (R) residues of this sequence are required for activity, since their replacement by alanine completely abrogated the HBP/III5 cytoskeletal effect. Moreover, this sequence is also active in the context of large fibronectin fragments. Our results establish that the Hep III region provides co-operative signals to α5β1 for the progression of the cytoskeletal response and that these include activation of RhoA.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3925-3934 ◽  
Author(s):  
Mario M. Müller ◽  
Bernhard B. Singer ◽  
Esther Klaile ◽  
Björn Öbrink ◽  
Lothar Lucka

AbstractCarcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1/CD66a), expressed on leukocytes, epithelia, and endothelia mediates homophilic cell adhesion. It plays an important role in cell morphogenesis and, recently, soluble CEACAM1 isoforms have been implicated in angiogenesis. In the present study, we investigated the function of long transmembrane isoform of CEACAM1 (CEACAM1-L) in cultured rat brain endothelial cells. We observed that expression of CEACAM1-L promotes network formation on basement membrane Matrigel and increased cell motility after monolayer injury. During cell-matrix adhesion, CEACAM1-L translocated into the Triton X-100–insoluble cytoskeletal fraction and affected cell spreading and cell morphology on Matrigel and laminin-1 but not on fibronectin. On laminin-1, CEACAM1-L–expressing cells developed protrusions with lamellipodia, showed less stress fiber formation, reduced focal adhesion kinase (FAK) tyrosine phosphorylation, and decreased focal adhesion formation leading to high motility. CEACAM1-L–mediated morphologic alterations were sensitive to RhoA activation via lysophosphatidic acid (LPA) treatment and dependent on Rac1 activation. Furthermore, we demonstrate a matrix protein–dependent association of CEACAM1-L with talin, an important regulator of integrin function. Taken together, our results suggest that transmembrane CEACAM1-L expressed on endothelial cells is implicated in the activation phase of angiogenesis by affecting the cytoskeleton architecture and integrin-mediated signaling.


2021 ◽  
Author(s):  
Koichi Fukuda ◽  
Fan Lu ◽  
Jun Qin

AbstractRas suppressor-1 (Rsu-1) is a leucine-rich repeat (LRR)-containing protein that is crucial for regulating fundamental cell adhesion processes and tumor development. Rsu-1 interacts with a zinc-finger type multi LIM domain-containing adaptor protein PINCH-1 involved in the integrin-mediated consensus adhesome but not with highly homologous isoform PINCH-2. However, the structural basis for such specific interaction and regulatory mechanism remains unclear. Here, we determined the crystal structures of Rsu-1 and its complex with the PINCH-1 LIM4-5 domains. Rsu-1 displays an arc-shaped solenoid architecture with eight LRRs shielded by the N- and C-terminal capping modules. We show that a large conserved concave surface of the Rsu-1 LRR domain recognizes the PINCH-1 LIM5 domain, and that the C-terminal non-LIM region of PINCH-2 but not PINCH-1 sterically disfavors the Rsu-1 binding. We further show that Rsu-1 can be assembled, via PINCH-1-binding, into a tight hetero-pentamer complex comprising Rsu-1, PINCH-1, ILK, Parvin, and Kindlin-2 that constitute a major consensus integrin adhesome crucial for focal adhesion assembly. Consistently, our mutagenesis and cell biological data consolidate the significance of the Rsu-1/PINCH-1 interaction in focal adhesion assembly and cell spreading. Our results provide a crucial molecular insight into Rsu-1-mediated cell adhesion with implication on how it may regulate tumorigenic growth.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xiaoqian Fang ◽  
Dong H Kim ◽  
Teresa Santiago-Sim

Introduction: An intracranial aneurysm (IA) is a weak spot in cerebral blood vessel wall that can lead to its abnormal bulging. Previously, we reported that mutations in THSD1 , encoding thrombospondin type-1 domain-containing protein 1, are associated with IA in a subset of patients. THSD1 is a transmembrane molecule with a thrombospondin type-1 repeat (TSR). Proteins with TSR domain have been implicated in a variety of processes including regulation of matrix organization, cell adhesion and migration. We have shown that in mouse brain Thsd1 is expressed in endothelial cells. Hypothesis: THSD1 plays an important role in maintaining the integrity of the endothelium by promoting adhesion of endothelial cells to the underlying basement membrane. Methods: Human umbilical vein endothelial cells are used to investigate the role of THSD1 in vitro . THSD1 expression was knocked-down by RNA interference. Cell adhesion assay was done on collagen I-coated plates and focal adhesion formation was visualized using immunofluorescence by paxillin and phosphorylated focal adhesion kinase (pFAK) staining. THSD1 re-expression is accomplished by transfection with a pCR3.1-THSD1-encoding plasmid. Results: Knockdown of THSD1 caused striking change in cell morphology and size. Compared to control siRNA-treated cells that exhibited typical cobblestone morphology, THSD1 knockdown cells were narrow and elongated, and were significantly smaller ( p <0.01). Cell adherence to collagen I-coated plates was also attenuated in THSD1 knockdown cells ( p <0.01). Consistent with this finding is the observation that the number and size of focal adhesions, based on paxillin and pFAK staining, were significantly reduced after THSD1 knockdown ( p <0.01). These defects in cell adhesion and focal adhesion formation were rescued by re-expression of wild type THSD1 ( p <0.05). In contrast, initial studies indicate that expression of mutated versions of THSD1 as seen in human patients (L5F, R450*, E466G, P639L) could not restore cell adhesion and focal adhesion formation to wild type levels. Conclusions: Our studies provide evidence for a role of THSD1 and THSD1 mutations in endothelial cell adhesion and suggest a possible mechanism underlying THSD1 -mediated aneurysm disease.


2000 ◽  
Vol 113 (11) ◽  
pp. 1871-1882 ◽  
Author(s):  
C.S. Stipp ◽  
M.E. Hemler

Proteins in the transmembrane-4-superfamily (TM4SF) form many different complexes with proteins in the integrin family, but the functional utility of these complexes has not yet been demonstrated. Here we show that TM4SF proteins CD151, CD81, and CD63 co-distribute with alpha3beta1 integrin on neurites and growth cones of human NT2N cells. Also, stable CD151-alpha3beta1 and CD81-alpha3beta1 complexes were recovered in NT2N detergent lysates. Total NT2N neurite outgrowth on laminin-5 (a ligand for alpha3beta1 integrin) was strongly inhibited by anti-CD151 and -CD81 antibodies either together (approximately 85% inhibition) or alone (approximately 45% inhibition). Notably, these antibodies had no inhibitory effect on NT2N neurites formed on laminin-1 or fibronectin, when alpha3beta1integrin was not engaged. Neurite number, length, and rate of extension were all affected by anti-TM4SF antibodies. In summary: (1) these substrate-dependent inhibition results strongly suggest that CD151 and CD81 associations with alpha3beta1 are functionally relevant, (2) TM4SF proteins CD151 and CD81 make a strong positive contribution toward neurite number, length, and rate of outgrowth, and (3) NT2N cells, a well-established model of immature central nervous system neurons, can be a powerful system for studies of integrin function in neurite outgrowth and growth cone motility.


2009 ◽  
Vol 186 (3) ◽  
pp. 423-436 ◽  
Author(s):  
Sabina E. Winograd-Katz ◽  
Shalev Itzkovitz ◽  
Zvi Kam ◽  
Benjamin Geiger

Cell adhesion to the extracellular matrix is mediated by elaborate networks of multiprotein complexes consisting of adhesion receptors, cytoskeletal components, signaling molecules, and diverse adaptor proteins. To explore how specific molecular pathways function in the assembly of focal adhesions (FAs), we performed a high-throughput, high-resolution, microscopy-based screen. We used small interfering RNAs (siRNAs) to target human kinases, phosphatases, and migration- and adhesion-related genes. Multiparametric image analysis of control and of siRNA-treated cells revealed major correlations between distinct morphological FA features. Clustering analysis identified different gene families whose perturbation induced similar effects, some of which uncoupled the interfeature correlations. Based on these findings, we propose a model for the molecular hierarchy of FA formation, and tested its validity by dynamic analysis of FA formation and turnover. This study provides a comprehensive information resource on the molecular regulation of multiple cell adhesion features, and sheds light on signaling mechanisms regulating the formation of integrin adhesions.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
David W. Dumbauld ◽  
Heungsoo Shin ◽  
Nathan D. Gallant ◽  
Kristin E. Michael ◽  
Harish Radhakrishna ◽  
...  

1997 ◽  
Vol 324 (2) ◽  
pp. 653-658 ◽  
Author(s):  
Laura LUO ◽  
Tony CRUZ ◽  
Christopher McCULLOCH

The cytokine interleukin 1 (IL-1) is an important mediator of connective-tissue destruction in arthritic joints but the mechanisms by which IL-1 mediates signal transduction in chondrocytes is poorly understood. Previous results have indicated that IL-1 receptors co-localize with focal adhesions [Qwarnstrom, Page, Gillis and Dower (1988) J. Biol. Chem. 263, 8261–8269], discrete adhesive domains of cells that function in cell attachment and possibly in signal transduction. We have determined whether focal adhesions restrict IL-1-induced Ca2+ signalling in primary cultures of bovine chondrocytes. In cells grown for 24 h on fibronectin, the basal intracellular Ca2+ ion concentration ([Ca2+]i) was 100±3 nM. Optimal increases of [Ca2+]i above baseline were induced by 10 nM IL-1 (183±30 nM above baseline). There was no significant difference between cells plated on fibronectin or type II collagen (P > 0.2; 233±90 nM above baseline). Ca2+ transients were significantly decreased by the inclusion of 0.5 mM EGTA in the bathing buffer (74±11 nM above baseline), and 1 μM thapsigargin completely blocked Ca2+ transients. Cells plated on poly-(l-lysine) or suspended cells showed no Ca2+ increases, whereas cells grown on fibronectin exhibited IL-1-induced Ca2+ responses that corresponded temporally to the time-dependent cell spreading after plating on fibronectin. Cells plated on poly-(l-lysine) and incubated with fibronectin-coated beads exhibited vinculin staining in association with the beads. In identical cell preparations, IL-1 induced a 136±39 nM increase of [Ca2+]i above baseline in response to 10 nM IL-1β. There were no IL-1-induced Ca2+ increases when cells on poly-(l-lysine) were incubated with fibronectin-coated beads for only 15 min at 37 °C, in cells maintained for 3 h at 4 °C, in cells incubated with BSA beads for 3 h at 37 °C, or in cells pretreated with cytochalasin D. Labelling of IL-1 receptors with 125I-IL-1β showed 3-fold more specific labelling of focal adhesion complexes in cells incubated with fibronectin-coated beads compared with cells incubated with BSA-coated beads, indicating that IL-1 receptor binding or the number of IL-1 receptors was increased in focal adhesions. These results indicate that, in chondrocytes, IL-1-induced Ca2+ signalling is dependent on focal adhesion formation and that focal adhesions recruit IL-1 receptors by redistribution in the cell membrane.


FEBS Letters ◽  
2016 ◽  
Vol 590 (14) ◽  
pp. 2138-2145 ◽  
Author(s):  
Rie Miyano ◽  
Takashi Matsumoto ◽  
Hiroyuki Takatsu ◽  
Kazuhisa Nakayama ◽  
Hye-Won Shin

Sign in / Sign up

Export Citation Format

Share Document