Rvs167p, the budding yeast homolog of amphiphysin, colocalizes with actin patches

1999 ◽  
Vol 112 (15) ◽  
pp. 2529-2537 ◽  
Author(s):  
A. Balguerie ◽  
P. Sivadon ◽  
M. Bonneu ◽  
M. Aigle

In this report, we have shown that the yeast amphiphysin-like protein Rvs167p was localized mainly in small cortical patches throughout the cell in unbudding cells. During budding, the patches were polarized at bud emergence site. During mating, Rvs167p was concentrated at the tip of the shmoo. Rvs167p colocalized with actin patches during yeast vegetative growth and mating. Complete disruption of the actin cytoskeleton using Latrunculin-A did not affect Rvs167p localization in patches throughout the cell. In rvs167 mutant cells, actin patches are mislocalized and in rvs161 or abp1 mutant cells, Rvs167p localization is not affected. These observations suggest that Rvs167p may localize the actin cortical complex properly. Finally, the amphiphysin-conserved N-terminal domain of Rvs167p, called the BAR domain, was required but not sufficient for the correct localization of the protein.

2003 ◽  
Vol 23 (17) ◽  
pp. 6327-6337 ◽  
Author(s):  
Aparna Sreenivasan ◽  
Anthony C. Bishop ◽  
Kevan M. Shokat ◽  
Douglas R. Kellogg

ABSTRACT In budding yeast, the Elm1 kinase is required for coordination of cell growth and cell division at G2/M. Elm1 is also required for efficient cytokinesis and for regulation of Swe1, the budding yeast homolog of the Wee1 kinase. To further characterize Elm1 function, we engineered an ELM1 allele that can be rapidly and selectively inhibited in vivo. We found that inhibition of Elm1 kinase activity during G2 results in a phenotype similar to the phenotype caused by deletion of the ELM1 gene, as expected. However, inhibition of Elm1 kinase activity earlier in the cell cycle results in a prolonged G1 delay. The G1 requirement for Elm1 kinase activity occurs before bud emergence, polarization of the septins, and synthesis of G1 cyclins. Inhibition of Elm1 kinase activity during early G1 also causes defects in the organization of septins, and inhibition of Elm1 kinase activity in a strain lacking the redundant G1 cyclins CLN1 and CLN2 is lethal. These results demonstrate that the Elm1 kinase plays an important role in G1 events required for bud emergence and septin organization.


2003 ◽  
Vol 14 (8) ◽  
pp. 3280-3291 ◽  
Author(s):  
Chandra L. Theesfeld ◽  
Trevin R. Zyla ◽  
Elaine G.S. Bardes ◽  
Daniel J. Lew

Cell cycle transitions are subject to regulation by both external signals and internal checkpoints that monitor satisfactory progression of key cell cycle events. In budding yeast, the morphogenesis checkpoint arrests the cell cycle in response to perturbations that affect the actin cytoskeleton and bud formation. Herein, we identify a step in this checkpoint pathway that seems to be directly responsive to bud emergence. Activation of the kinase Hsl1p is dependent upon its recruitment to a cortical domain organized by the septins, a family of conserved filament-forming proteins. Under conditions that delayed or blocked bud emergence, Hsl1p recruitment to the septin cortex still took place, but hyperphosphorylation of Hsl1p and recruitment of the Hsl1p-binding protein Hsl7p to the septin cortex only occurred after bud emergence. At this time, the septin cortex spread to form a collar between mother and bud, and Hsl1p and Hsl7p were restricted to the bud side of the septin collar. We discuss models for translating cellular geometry (in this case, the emergence of a bud) into biochemical signals regulating cell proliferation.


2018 ◽  
Author(s):  
Younghoon Oh ◽  
Jennifer H. Schreiter ◽  
Hiroki Okada ◽  
Carsten Wloka ◽  
Satoshi Okada ◽  
...  

Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1817-1828 ◽  
Author(s):  
Wei Geng ◽  
Biao He ◽  
Mina Wang ◽  
Paul N Adler

Abstract During their differentiation epidermal cells of Drosophila form a rich variety of polarized structures. These include the epidermal hairs that decorate much of the adult cuticular surface, the shafts of the bristle sense organs, the lateral extensions of the arista, and the larval denticles. These cuticular structures are produced by cytoskeletal-mediated outgrowths of epidermal cells. Mutations in the tricornered gene result in the splitting or branching of all of these structures. Thus, tricornered function appears to be important for maintaining the integrity of the outgrowths. tricornered mutations however do not have major effects on the growth or shape of these cellular extensions. Inhibiting actin polymerization in differentiating cells by cytochalasin D or latrunculin A treatment also induces the splitting of hairs and bristles, suggesting that the actin cytoskeleton might be a target of tricornered. However, the drugs also result in short, fat, and occasionally malformed hairs and bristles. The data suggest that the function of the actin cytoskeleton is important for maintaining the integrity of cellular extensions as well as their growth and shape. Thus, if tricornered causes the splitting of cellular extensions by interacting with the actin cytoskeleton it likely does so in a subtle way. Consistent with this possibility we found that a weak tricornered mutant is hypersensitive to cytochalasin D. We have cloned the tricornered gene and found that it encodes the Drosophila NDR kinase. This is a conserved ser/thr protein kinase found in Caenorhabditis elegans and humans that is related to a number of kinases that have been found to be important in controlling cell structure and proliferation.


2003 ◽  
Vol 23 (5) ◽  
pp. 1750-1763 ◽  
Author(s):  
Hilary A. Kemp ◽  
George F. Sprague,

ABSTRACT In budding yeast, diffusible mating pheromones initiate a signaling pathway that culminates in several responses, including cell cycle arrest. Only a handful of genes required for the interface between pheromone response and the cell cycle have been identified, among them FAR1 and FAR3; of these, only FAR1 has been extensively characterized. In an effort to learn about the mechanism by which Far3 acts, we used the two-hybrid method to identify interacting proteins. We identified five previously uncharacterized open reading frames, dubbed FAR7, FAR8, FAR9, FAR10, and FAR11, that cause a far3-like pheromone arrest defect when disrupted. Using two-hybrid and coimmunoprecipitation analysis, we found that all six Far proteins interact with each other. Moreover, velocity sedimentation experiments suggest that Far3 and Far7 to Far11 form a complex. The phenotype of a sextuple far3far7-far11 mutant is no more severe than any single mutant. Thus, FAR3 and FAR7 to FAR11 all participate in the same pathway leading to G1 arrest. These mutants initially arrest in response to pheromone but resume budding after 10 h. Under these conditions, wild-type cells fail to resume budding even after several days whereas far1 mutant cells resume budding within 1 h. We conclude that the FAR3-dependent arrest pathway is functionally distinct from that which employs FAR1.


2009 ◽  
Vol 296 (4) ◽  
pp. C857-C867 ◽  
Author(s):  
Silvia M. Uriarte ◽  
Neelakshi R. Jog ◽  
Gregory C. Luerman ◽  
Samrath Bhimani ◽  
Richard A. Ward ◽  
...  

We have recently reported that disruption of the actin cytoskeleton enhanced N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated granule exocytosis in human neutrophils but decreased plasma membrane expression of complement receptor 1 (CR1), a marker of secretory vesicles. The present study was initiated to determine if reduced CR1 expression was due to fMLP-stimulated endocytosis, to determine the mechanism of this endocytosis, and to examine its impact on neutrophil functional responses. Stimulation of neutrophils with fMLP or ionomycin in the presence of latrunculin A resulted in the uptake of Alexa fluor 488-labeled albumin and transferrin and reduced plasma membrane expression of CR1. These effects were prevented by preincubation of the cells with sucrose, chlorpromazine, or monodansylcadaverine (MDC), inhibitors of clathrin-mediated endocytosis. Sucrose, chlorpromazine, and MDC also significantly inhibited fMLP- and ionomycin-stimulated specific and azurophil granule exocytosis. Disruption of microtubules with nocodazole inhibited endocytosis and azurophil granule exocytosis stimulated by fMLP in the presence of latrunculin A. Pharmacological inhibition of phosphatidylinositol 3-kinase, ERK1/2, and PKC significantly reduced fMLP-stimulated transferrin uptake in the presence of latrunculin A. Blockade of clathrin-mediated endocytosis had no significant effect on fMLP-stimulated phosphorylation of ERK1/2 in neutrophils pretreated with latrunculin A. From these data, we conclude that the actin cytoskeleton functions to limit microtubule-dependent, clathrin-mediated endocytosis in stimulated human neutrophils. The limitation of clathrin-mediated endocytosis by actin regulates the extent of both specific and azurophilic granule exocytosis.


1992 ◽  
Vol 12 (6) ◽  
pp. 2653-2661
Author(s):  
E Gross ◽  
I Marbach ◽  
D Engelberg ◽  
M Segal ◽  
G Simchen ◽  
...  

The CDC25 gene product of the yeast Saccharomyces cerevisiae has been shown to be a positive regulator of the Ras protein. The high degree of homology between yeast RAS and the mammalian proto-oncogene ras suggests a possible resemblance between the mammalian regulator of Ras and the regulator of the yeast Ras (Cdc25). On the basis of this assumption, we have raised antibodies against the conserved C-terminal domain of the Cdc25 protein in order to identify its mammalian homologs. Anti-Cdc25 antibodies raised against a beta-galactosidase-Cdc25 fusion protein were purified by immunoaffinity chromatography and were shown by immunoblotting to specifically recognize the Cdc25 portion of the antigen and a truncated Cdc25 protein, also expressed in bacteria. These antibodies were shown both by immunoblotting and by immunoprecipitation to recognize the CDC25 gene product in wild-type strains and in strains overexpressing Cdc25. The anti-Cdc25 antibodies potently inhibited the guanyl nucleotide-dependent and, approximately 3-fold less potently, the Mn(2+)-dependent adenylyl cyclase activity in S. cerevisiae. The anti-Cdc25 antibodies do not inhibit cyclase activity in a strain harboring RAS2Val-19 and lacking the CDC25 gene product. These results support the view that Cdc25, Ras2, and Cdc35/Cyr1 proteins are associated in a complex. Using these antibodies, we were able to define the conditions to completely solubilize the Cdc25 protein. The results suggest that the Cdc25 protein is tightly associated with the membrane but is not an intrinsic membrane protein, since only EDTA at pH 12 can solubilize the protein. The anti-Cdc25 antibodies strongly cross-reacted with the C-terminal domain of the Cdc25 yeast homolog, Sdc25. Most interestingly, these antibodies also cross-reacted with mammalian proteins of approximately 150 kDa from various tissues of several species of animals. These interactions were specifically blocked by the beta-galactosidase-Cdc25 fusion protein.


2008 ◽  
Vol 43 (2) ◽  
pp. 275-279 ◽  
Author(s):  
Gao Zheng-Quan ◽  
Meng Chun-Xiao ◽  
Ye Nai-Hao

The objective of this work was to assess stimulated latex flow from rubber trees (Hevea brasiliensis) with saturated macrolide (latrunculin A), 1, 5, and 10% potassium iodide in 2% methylcellulose compared with 0.3% ethylene in 2% methylcellulose (check) and 2% methylcellulose (blank). Latex output and contents of pure rubber, total solid, sucrose, inorganic phosphorus, thiol, and Mg2+ were measured. The treatments containing 1% KI or saturated macrolide increased latex yields compared to the blank with 2% methylcellulose alone. The 1% KI or saturated macrolide treatments were equal to that of 0.3% ethylene check treatment. However, 5 and 10% KI were harmful to bark of rubber trees, even caused prolonged tapping panel dryness.


1997 ◽  
Vol 110 (20) ◽  
pp. 2547-2555 ◽  
Author(s):  
M. Arellano ◽  
A. Duran ◽  
P. Perez

The Schizosaccharomyces pombe rho1p GTPase directly activates the (1–3) beta-D-glucan synthase and participates in the regulation of cell wall growth and morphogenesis in this fission yeast. Indirect immunofluorescence experiments using rho1p tagged with hemagglutinin have revealed that rho1p was located at the growing tips during interphase and at the septum prior to cytokinesis, localising to the same areas as actin patches. In S. pombe cdc10-129 mutant cells, arrested in G1, HA-rho1p accumulates at one tip whereas in cdc25-22 mutants, arrested in G2, HA-rho1p accumulates at both tips. In tea1-1 and tea2-1 cdc11-119 mutant cells, HA-rho1p is localised to the new growing tips. Overexpression of different rho1 mutant alleles caused different effects on cortical actin patch distribution, (1–3) beta-D-glucan synthase activation, and sensitivity to cell wall specific antifungal drugs. These results indicate that multiple cellular components are activated by rho1p. Overexpression of the dominant negative rho1T20N allele was lethal as was the rho1+ deletion. Moreover, when rho1+ expression was repressed in actively growing S. pombe, cells died in about 10 to 12 hours. Under these conditions, normal cell morphology was maintained but the level of (1–3) beta-D-glucan synthase activity decreased and the actin patches disappeared. Most cells lysed after cytokinesis during the process of separation, and lysis was not prevented by an osmotic stabiliser. We conclude that rho1p localisation is restricted to growth areas and regulated during the cell cycle and that rho1p is involved in cell wall growth and actin cytoskeleton organisation in S. pombe.


Sign in / Sign up

Export Citation Format

Share Document