Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes

1999 ◽  
Vol 112 (24) ◽  
pp. 4601-4613 ◽  
Author(s):  
F.G. Scholl ◽  
C. Gamallo ◽  
S. Vilar?o ◽  
M. Quintanilla

PA2.26 antigen was identified as a cell-surface protein induced in epidermal carcinogenesis and skin remodeling processes. PA2.26 is expressed in carcinoma cell lines and cultured fibroblasts but absent in nontumorigenic keratinocytes. In tissues, PA2.26 is present in epithelial cells of the choroid plexus, ependyma, glomerulus and alveolus, in mesothelial cells, and in endothelia of lymphatic vessels. Biochemical characterization of PA2.26 protein and sequence analysis of the isolated cDNA demonstrate that PA2.26 antigen is a mucin-like transmembrane glycoprotein. Confocal and immunoelectron microscopy analysis in cultured cells reveal that PA2. 26 is concentrated in actin-rich microvilli and plasma membrane projections, such as filopodia, lamellipodia and ruffles, where it colocalizes with members of the ERM (ezrin, radixin, moesin) family protein. Ezrin and moesin, but not radixin, can be coimmunoprecipitated together with PA2.26 from cell lysates. Ectopic expression of PA2.26 in immortalized, nontumorigenic, keratinocytes induces an epithelial-fibroblastoid morphological conversion with increased plasma membrane extensions, concomitantly to a major reorganization of the actin cytoskeleton, redistribution of ezrin to cell-surface projections, and enhanced motility. These findings suggest an involvement of PA2.26 in cell migration.

1990 ◽  
Vol 10 (6) ◽  
pp. 2606-2618 ◽  
Author(s):  
C M Isacke ◽  
P van der Geer ◽  
T Hunter ◽  
I S Trowbridge

A 180-kilodalton (kDa) protein (p180) was identified among the antigens for a panel of monoclonal antibodies raised against human fibroblast cell surface proteins. Binding studies with 125I-Fab' fragments of an anti-p180 monoclonal antibody demonstrated that 10 to 30% of p180 was located on the plasma membrane and that the remaining 70 to 90% was on intracellular membranes. p180 was rapidly internalized from the cell surface at 37 degrees C, and kinetic analyses indicated that this was a constitutive process followed by the recycling of p180 back to the plasma membrane. Morphological studies demonstrated that on the cell surface p180 was concentrated in coated pits, whereas inside the cell it was found in endosomes as suggested by its colocalization with the transferrin receptor. Immunoblot analysis with a polyclonal antiserum raised against purified human protein showed that p180 has a restricted distribution with expression at high levels in fibroblast cultures and in tissues containing cells of mesodermal origin. A biochemical characterization of p180 showed it to be a transmembrane glycoprotein with an extracellular domain, which consists of approximately 30 kDa of complex oligosaccharides attached to at least 45 kDa of the protein core. The cytoplasmic domain of p180 was found to contain a serine residue(s) that was phosphorylated both in vivo and in vitro by activated protein kinase C. p180 was purified by subjecting solubilized membrane proteins from a human osteosarcoma cell line to immunoaffinity chromatography and gel filtration. The N-terminal sequence information obtained from the purified protein showed no homology to other known proteins. It was concluded that p180 may be a novel recycling receptor which is highly restricted in its expression to fibroblastlike cells.


2001 ◽  
Vol 69 (4) ◽  
pp. 2144-2153 ◽  
Author(s):  
Anne-Judith Waligora ◽  
Claire Hennequin ◽  
Peter Mullany ◽  
Pierre Bourlioux ◽  
Anne Collignon ◽  
...  

ABSTRACT Our laboratory has previously shown that Clostridium difficile adherence to cultured cells is enhanced after heat shock at 60°C and that it is mediated by a proteinaceous surface component. The present study was undertaken to identify the surface molecules of this bacterium that could play a role in its adherence to the intestine. The cwp66 gene, encoding a cell surface-associated protein of C. difficile 79-685, was isolated by immunoscreening of a C. difficile gene library with polyclonal antibodies against C. difficile heated at 60°C. The Cwp66 protein (66 kDa) contains two domains, each carrying three imperfect repeats and one presenting homologies to the autolysin CwlB of Bacillus subtilis. A survey of 36 strains ofC. difficile representing 11 serogroups showed that the 3′ portion of the cwp66 gene is variable; this was confirmed by sequencing of cwp66 from another strain, C-253. Two recombinant protein fragments corresponding to the two domains of Cwp66 were expressed in fusion with glutathione S-transferase inEscherichia coli and purified by affinity chromatography using gluthatione-Sepharose 4B. Antibodies raised against the two domains recognized Cwp66 in bacterial surface extracts. By immunoelectron microscopy, the C-terminal domain was found to be cell surface exposed. When used as inhibitors in cell binding studies, the antibodies and protein fragments partially inhibited adherence ofC. difficile to cultured cells, confirming that Cwp66 is an adhesin, the first to be identified in clostridia.


1990 ◽  
Vol 10 (6) ◽  
pp. 2606-2618
Author(s):  
C M Isacke ◽  
P van der Geer ◽  
T Hunter ◽  
I S Trowbridge

A 180-kilodalton (kDa) protein (p180) was identified among the antigens for a panel of monoclonal antibodies raised against human fibroblast cell surface proteins. Binding studies with 125I-Fab' fragments of an anti-p180 monoclonal antibody demonstrated that 10 to 30% of p180 was located on the plasma membrane and that the remaining 70 to 90% was on intracellular membranes. p180 was rapidly internalized from the cell surface at 37 degrees C, and kinetic analyses indicated that this was a constitutive process followed by the recycling of p180 back to the plasma membrane. Morphological studies demonstrated that on the cell surface p180 was concentrated in coated pits, whereas inside the cell it was found in endosomes as suggested by its colocalization with the transferrin receptor. Immunoblot analysis with a polyclonal antiserum raised against purified human protein showed that p180 has a restricted distribution with expression at high levels in fibroblast cultures and in tissues containing cells of mesodermal origin. A biochemical characterization of p180 showed it to be a transmembrane glycoprotein with an extracellular domain, which consists of approximately 30 kDa of complex oligosaccharides attached to at least 45 kDa of the protein core. The cytoplasmic domain of p180 was found to contain a serine residue(s) that was phosphorylated both in vivo and in vitro by activated protein kinase C. p180 was purified by subjecting solubilized membrane proteins from a human osteosarcoma cell line to immunoaffinity chromatography and gel filtration. The N-terminal sequence information obtained from the purified protein showed no homology to other known proteins. It was concluded that p180 may be a novel recycling receptor which is highly restricted in its expression to fibroblastlike cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Mattisson ◽  
Marcus Danielsson ◽  
Maria Hammond ◽  
Hanna Davies ◽  
Caroline J. Gallant ◽  
...  

AbstractMosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


1994 ◽  
Vol 107 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
M. Footer ◽  
A. Bretscher

The isolated intestinal microvillus cytoskeleton (core) consists of four major proteins: actin, villin, fimbrin and brush border myosin-I. These proteins can assemble in vitro into structures resembling native microvillus cores. Of these components, villin and brush border myosin-I show tissue-specific expression, so they may be involved in the morphogenesis of intestinal microvilli. When introduced into cultured cells that normally lack the protein, villin induces a reorganization of the actin filaments to generate large surface microvilli. Here we examine the consequences of microinjecting brush border myosin-I either alone or together with villin into cultured fibroblasts. Injection of brush border myosin-I has no discernible effect on the overall morphology of the cells, but does become localized to either normal or villin-induced microvilli and other surface structures containing an actin cytoskeleton. Since some endogenous myosin-Is have been found associated with cytoplasmic vesicles, these results show that brush border myosin-I has a domain that specifically targets it to the plasma membrane in both intestinal and cultured cell systems. Ultrastructural examination of microvilli on control cultured cells revealed that they contain a far more highly ordered bundle of microfilaments than had been previously appreciated. The actin filaments in microvilli of villin-injected cells appeared to be more tightly cross-linked when examined by thin-section electron microscopy. In intestinal microvilli, the core bundle is separated from the plasma membrane by about 30 nm due to the presence of brush border myosin-I.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 255-265 ◽  
Author(s):  
J.A. Anstrom ◽  
J.E. Chin ◽  
D.S. Leaf ◽  
A.L. Parks ◽  
R.A. Raff

In this report, we use a monoclonal antibody (B2C2) and antibodies against a fusion protein (Leaf et al. 1987) to characterize msp130, a cell surface protein specific to the primary mesenchyme cells of the sea urchin embryo. This protein first appears on the surface of these cells upon ingression into the blastocoel. Immunoelectronmicroscopy shows that msp130 is present in the trans side of the Golgi apparatus and on the extracellular surface of primary mesenchyme cells. Four precursor proteins to msp130 are identified and we show that B2C2 recognizes only the mature form of msp130. We demonstrate that msp130 contains N-linked carbohydrate groups and that the B2C2 epitope is sensitive to endoglycosidase F digestion. Evidence that msp130 is apparently a sulphated glycoprotein is presented. The recognition of the B2C2 epitope of msp130 is disrupted when embryos are cultured in sulphate-free sea water. In addition, two-dimensional immunoblots show that msp130 is an acidic protein that becomes substantially less acidic in the absence of sulphate. We also show that two other independently derived monoclonal antibodies, IG8 (McClay et al. 1983; McClay, Matranga & Wessel, 1985) and 1223 (Carson et al. 1985), recognize msp130, and suggest this protein to be a major cell surface antigen of primary mesenchyme cells.


1991 ◽  
Vol 115 (5) ◽  
pp. 1357-1374 ◽  
Author(s):  
L S Musil ◽  
D A Goodenough

We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.


2019 ◽  
Vol 445 (1) ◽  
pp. 16-28 ◽  
Author(s):  
Yanina-Yasmin Pesch ◽  
Ricarda Hesse ◽  
Tariq Ali ◽  
Matthias Behr

1999 ◽  
Vol 112 (1) ◽  
pp. 111-125 ◽  
Author(s):  
M.R. Amieva ◽  
P. Litman ◽  
L. Huang ◽  
E. Ichimaru ◽  
H. Furthmayr

Lamellipodia, filopodia, microspikes and retraction fibers are characteristic features of a dynamic and continuously changing cell surface architecture and moesin, ezrin and radixin are thought to function in these microextensions as reversible links between plasma membrane proteins and actin microfilaments. Full-length and truncated domains of the three proteins were fused to green fluorescent protein (GFP), expressed in NIH3T3 cells, and distribution and behaviour of cells were analysed by using digitally enhanced differential interference contrast (DIC) and fluorescence video microscopy. The amino-terminal (N-)domains of all three proteins localize to the plasma membrane and fluorescence recordings parallel the dynamic changes in cell surface morphology observed by DIC microscopy of cultured cells. Expression of this domain, however, significantly affects cell surface architecture by the formation of abnormally long and fragile filopodia that poorly attach and retract abnormally. Even more striking are abundant irregular, branched and motionless membraneous structures that accumulate during retraction of lamellipodia. These are devoid of actin, endogenous moesin, ezrin and radixin, but contain the GFP-labeled domain. While a large proportion of endogenous proteins can be extracted with non-ionic detergents as in untransfected control cells, >90% of N-moesin and >60% of N-ezrin and N-radixin remain insoluble. The minimal size of the domain of moesin required for membrane localization and change in behavior includes residues 1–320. Deletions of amino acid residues from either end result in diffuse intracellular distribution, but also in normal cell behavior. Expression of GFP-fusions of full-length moesin or its carboxy-terminal domain has no effect on cell behavior during the observation period of 6–8 hours. The data suggest that, in the absence of the carboxy-terminal domain, N-moesin, -ezrin and -radixin interact tightly with the plasma membrane and interfere with normal functions of endogeneous proteins mainly during retraction.


1987 ◽  
Vol 105 (6) ◽  
pp. 2973-2987 ◽  
Author(s):  
C J Horst ◽  
D M Forestner ◽  
J C Besharse

The ciliary base is marked by a transition zone in which Y-shaped cross-linkers extend from doublet microtubules to the plasma membrane. Our goal was to investigate the hypothesis that the cross-linkers form a stable interaction between membrane or cell surface components and the underlying microtubule cytoskeleton. We have combined Triton X-100 extraction with lectin cytochemistry in the photoreceptor sensory cilium to investigate the relationship between cell surface glycoconjugates and the underlying cytoskeleton, and to identify the cell surface components involved. Wheat germ agglutinin (WGA) binds heavily to the cell surface in the region of the Y-shaped cross-linkers of the neonatal rat photoreceptor cilium. WGA binding is not removed by prior digestion with neuraminidase and succinyl-WGA also binds the proximal cilium, suggesting a predominance of N-acetylglucosamine containing glycoconjugates. Extraction of the photoreceptor plasma membrane with Triton X-100 removes the lipid bilayer, leaving the Y-shaped crosslinkers associated with the axoneme. WGA-binding sites are found at the distal ends of the crosslinkers after Triton X-100 extraction, indicating that the microtubule-membrane cross-linkers retain both a transmembrane and a cell surface component after removal of the lipid bilayer. To identify glycoconjugate components of the cross-linkers we used a subcellular fraction enriched in axonemes from adult bovine retinas. Isolated, detergent-extracted bovine axonemes show WGA binding at the distal ends of the cross-linkers similar to that seen in the neonatal rat. Proteins of the axoneme fraction were separated by SDS-PAGE and electrophoretically transferred to nitrocellulose. WGA labeling of the nitrocellulose transblots reveals three glycoconjugates, all of molecular mass greater than 400 kD. The major WGA-binding glycoconjugate has an apparent molecular mass of approximately 600 kD and is insensitive to prior digestion with neuraminidase. This glycoconjugate may correspond to the dominant WGA-binding component seen in cytochemical experiments.


Sign in / Sign up

Export Citation Format

Share Document