Fission yeast Rng3p: an UCS-domain protein that mediates myosin II assembly during cytokinesis

2000 ◽  
Vol 113 (13) ◽  
pp. 2421-2432 ◽  
Author(s):  
K.C. Wong ◽  
N.I. Naqvi ◽  
Y. Iino ◽  
M. Yamamoto ◽  
M.K. Balasubramanian

Cell division in many eukaryotes, including the fission yeast Schizosaccharomyces pombe, utilizes a contractile actomyosin ring. In S. pombe, the actomyosin ring is assembled at the medial cortex upon entry into mitosis and constricts at the end of anaphase to guide the centripetal deposition of the septum. Despite identification of several structural components essential for actomyosin ring assembly, the interdependencies between these gene-products in the process of ring assembly are unknown. This study investigates the role of Rng3p, a member of the UCS-domain containing protein family (Unc-45p, Cro1p, She4p), in actomyosin ring assembly. Null mutants in rng3 resemble deletion mutants in the type II myosin heavy chain (myo2) and rng3(ts) mutants show strong negative interactions with the myo2-E1 mutant, suggesting that Rng3p is involved in modulating aspects of type II myosin function. Interestingly, a green fluorescent protein (GFP) tagged Rng3p fusion is detected at the division site in the myo2-E1 mutant, but not in other myo2-alleles, wild-type cells or in 18 other cytokinesis mutants. Assembly and maintenance of Rng3p at the division site in the myo2-E1 mutant requires F-actin. Rng3p is also required for the proper assembly of Myo2p and F-actin into a functional actomyosin ring but is not necessary for their accumulation at the division site. We conclude that Rng3p is a novel component of the F-actin cytoskeleton essential for a late step in actomyosin ring assembly and that it might monitor some aspect of type II myosin assembly during actomyosin ring construction.

2001 ◽  
Vol 12 (12) ◽  
pp. 4044-4053 ◽  
Author(s):  
Daniel P. Mulvihill ◽  
Caroline Barretto ◽  
Jeremy S. Hyams

Myo2 truncations fused to green fluorescent protein (GFP) defined a C-terminal domain essential for the localization of Myo2 to the cytokinetic actin ring (CAR). The localization domain contained two predicted phosphorylation sites. Mutation of serine 1518 to alanine (S1518A) abolished Myo2 localization, whereas Myo2 with a glutamic acid at this position (S1518E) localized to the CAR. GFP-Myo2 formed rings in the septation initiation kinase (SIN) mutant cdc7-24 at 25°C but not at 36°C. GFP-Myo2S1518E rings persisted at 36°C incdc7-24 but not in another SIN kinase mutant,sid2-250. To further examine the relationship between Myo2 and the SIN pathway, the chromosomal copy ofmyo2+was fused to GFP (strainmyo2-gc). Myo2 ring formation was abolished in the double mutants myo2-gc cdc7.24 and myo2-gc sid2-250 at the restrictive temperature. In contrast, activation of the SIN pathway in the double mutant myo2-gc cdc16-116 resulted in the formation of Myo2 rings which subsequently collapsed at 36°C. We conclude that the SIN pathway that controls septation in fission yeast also regulates Myo2 ring formation and contraction. Cdc7 and Sid2 are involved in ring formation, in the case of Cdc7 by phosphorylation of a single serine residue in the Myo2 tail. Other kinases and/or phosphatases may control ring contraction.


1998 ◽  
Vol 142 (2) ◽  
pp. 457-471 ◽  
Author(s):  
Kenneth E. Sawin ◽  
Paul Nurse

To investigate the role of microtubules in regulating cell polarity in Schizosaccharomyces pombe, we have developed a system in which normally cylindrical fission yeast synchronously form branched cells at high frequency upon treatment with the microtubule-depolymerizing drug thiabendazole (TBZ). Branching depends on both elevated temperature and cell cycle state and occurs at high frequency only when TBZ is added to cells that have not yet passed through New-End Take-Off (NETO), the normal transition from monopolar to bipolar growth. This suggests that microtubules may be of greatest physiological importance for the maintenance of cell shape at specific points in the cell cycle. The localization of three different proteins normally found at cell ends—cortical F-actin, tea1, and an ral3 (scd2)–green fluorescent protein (GFP) fusion—is disrupted by TBZ treatment. However, these proteins can eventually return to cell ends in the absence of microtubules, indicating that although their localization to ends normally depends on microtubules, they may recover by alternative mechanisms. In addition, TBZ induces a shift in ral3–GFP distribution from cell ends to the cell middle, suggesting that a protein complex containing ral3 may be part of the cue that specifies the position of branch formation.


2004 ◽  
Vol 165 (5) ◽  
pp. 685-695 ◽  
Author(s):  
Fumio Motegi ◽  
Mithilesh Mishra ◽  
Mohan K. Balasubramanian ◽  
Issei Mabuchi

Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin.


2008 ◽  
Vol 294 (3) ◽  
pp. F562-F570 ◽  
Author(s):  
Vani Nilakantan ◽  
Cheryl Maenpaa ◽  
Guangfu Jia ◽  
Richard J. Roman ◽  
Frank Park

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK1 cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK1 cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release ( P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 μM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 μM) also inhibited cytotoxicity significantly ( P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase ( P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells ( P < 0.05). This was abolished in the presence of HET-0016 ( P < 0.05) or MnTMPyP ( P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.


Biochemistry ◽  
2005 ◽  
Vol 44 (49) ◽  
pp. 16211-16220 ◽  
Author(s):  
Timothy I. Wood ◽  
David P. Barondeau ◽  
Chiharu Hitomi ◽  
Carey J. Kassmann ◽  
John A. Tainer ◽  
...  

2006 ◽  
Vol 17 (2) ◽  
pp. 799-813 ◽  
Author(s):  
Keylon L. Cheeseman ◽  
Takehiko Ueyama ◽  
Tanya M. Michaud ◽  
Kaori Kashiwagi ◽  
Demin Wang ◽  
...  

Protein kinase C-ϵ (PKC-ϵ) translocates to phagosomes and promotes uptake of IgG-opsonized targets. To identify the regions responsible for this concentration, green fluorescent protein (GFP)-protein kinase C-ϵ mutants were tracked during phagocytosis and in response to exogenous lipids. Deletion of the diacylglycerol (DAG)-binding ϵC1 and ϵC1B domains, or the ϵC1B point mutant ϵC259G, decreased accumulation at phagosomes and membrane translocation in response to exogenous DAG. Quantitation of GFP revealed that ϵC259G, ϵC1, and ϵC1B accumulation at phagosomes was significantly less than that of intact PKC-ϵ. Also, the DAG antagonist 1-hexadecyl-2-acetyl glycerol (EI-150) blocked PKC-ϵ translocation. Thus, DAG binding to ϵC1B is necessary for PKC-ϵ translocation. The role of phospholipase D (PLD), phosphatidylinositol-specific phospholipase C (PI-PLC)-γ1, and PI-PLC-γ2 in PKC-ϵ accumulation was assessed. Although GFP-PLD2 localized to phagosomes and enhanced phagocytosis, PLD inhibition did not alter target ingestion or PKC-ϵ localization. In contrast, the PI-PLC inhibitor U73122 decreased both phagocytosis and PKC-ϵ accumulation. Although expression of PI-PLC-γ2 is higher than that of PI-PLC-γ1, PI-PLC-γ1 but not PI-PLC-γ2 consistently concentrated at phagosomes. Macrophages from PI-PLC-γ2-/-mice were similar to wild-type macrophages in their rate and extent of phagocytosis, their accumulation of PKC-ϵ at the phagosome, and their sensitivity to U73122. This implicates PI-PLC-γ1 as the enzyme that supports PKC-ϵ localization and phagocytosis. That PI-PLC-γ1 was transiently tyrosine phosphorylated in nascent phagosomes is consistent with this conclusion. Together, these results support a model in which PI-PLC-γ1 provides DAG that binds to ϵC1B, facilitating PKC-ϵ localization to phagosomes for efficient IgG-mediated phagocytosis.


2002 ◽  
Vol 184 (7) ◽  
pp. 1998-2004 ◽  
Author(s):  
Takako Murakami ◽  
Koki Haga ◽  
Michio Takeuchi ◽  
Tsutomu Sato

ABSTRACT The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.


2000 ◽  
Vol 278 (3) ◽  
pp. F361-F368 ◽  
Author(s):  
N. Hernando ◽  
S. Sheikh ◽  
Z. Karim-Jimenez ◽  
H. Galliker ◽  
J. Forgo ◽  
...  

Targeting of newly synthesized transporters to either the apical or basolateral domains of polarized cells is crucial for the function of epithelia, such as in the renal proximal tubule or in the small intestine. Recently, different sodium-phosphate cotransporters have been identified. Type II cotransporters can be subdivided into two groups: type IIa and type IIb. Type IIa is predominantly expressed in renal proximal tubules, whereas type IIb is located on the intestinal and lung epithelia. To gain some insights into the polarized targeting of the type II cotransporters, we have transiently expressed type IIa and type IIb cotransporters in several epithelial cell lines: two lines derived from renal proximal cells (opossum kidney and LLC-PK1), one from renal distal cells (Madin-Darby canine kidney), and one from colonic epithelium (CaCo-2). We studied the expression of the transporters fused to the enhanced green fluorescent protein. Our data indicate that the polarized targeting is dependent on molecular determinants most probably located at the COOH terminus of the cotransporters as well as on the cellular context.


Sign in / Sign up

Export Citation Format

Share Document