The role of lipid rafts in signalling and membrane trafficking in T lymphocytes

2001 ◽  
Vol 114 (22) ◽  
pp. 3957-3965
Author(s):  
Miguel A. Alonso ◽  
Jaime Millán

Combinatorial association of different lipid species generates microheterogeneity in biological membranes. The association of glycosphingolipids with cholesterol forms membrane microdomains – lipid rafts – that are involved in specialised pathways of protein/lipid transport and signalling. Lipid rafts are normally dispersed in cellular membranes and appear to require specialised machinery to reorganise them to operate. Caveolin-1 and MAL are members of two different protein families involved in reorganisation of lipid rafts for signalling and/or intracellular transport in epithelial cells. T cell activation induces a rapid compartmentalisation of signalling machinery into reorganised rafts that are used as platforms for the assembly of the signalling complex. Costimulatory molecules participate in this process by providing signals that mobilise raft lipids and proteins, and remodel the cytoskeleton to the contact site. As in epithelial cells, rafts are used also as vesicular carriers for membrane trafficking in T lymphocytes. Furthermore, there are potential similarities between the specialised protein machinery underlying raft-mediated processes in T lymphocytes and polarised epithelial cells.

2006 ◽  
Vol 34 (4) ◽  
pp. 476-479 ◽  
Author(s):  
K. Taskén ◽  
A.J. Stokka

cAMP inhibits Src-family kinase signalling by PKA (protein kinase A)-mediated phosphorylation and activation of Csk (C-terminal Src kinase). The PKA type I–Csk pathway is assembled and localized in membrane microdomains (lipid rafts) and regulates immune responses activated through the TCR (T-cell receptor). PKA type I is targeted to the TCR–CD3 complex during T-cell activation via an AKAP (A-kinase-anchoring protein) that serves as a scaffold for the cAMP–PKA/Csk pathway in lipid rafts of the plasma membrane during T-cell activation. Displacement of PKA by anchoring disruption peptides prevents cAMP/PKA type I-mediated inhibition of T-cell activation. These findings provide functional evidence that PKA type I regulation of T-cell responses is dependent on AKAP anchoring. Furthermore, we show that upon TCR/CD28 co-ligation, β-arrestin in complex with PDE4 (phosphodiesterase 4) is recruited to lipid rafts. The CD28-mediated recruitment of PDE4 to lipid rafts potentiates T-cell immune responses and counteracts the local, TCR-induced production of cAMP that produces negative feedback in the absence of a co-receptor stimulus. The specific recruitment of PDE4 thus serves to abrogate the negative feedback by cAMP which is elicited in the absence of a co-receptor stimulus.


2002 ◽  
Vol 363 (3) ◽  
pp. 645-655 ◽  
Author(s):  
Alexandre K. ROUQUETTE-JAZDANIAN ◽  
Claudette PELASSY ◽  
Jean-Philippe BREITTMAYER ◽  
Jean-Louis COUSIN ◽  
Claude AUSSEL

Cell membranes contain sphingolipids and cholesterol, which cluster together in distinct domains called rafts. The outer-membrane leaflet of these peculiar membrane domains contains glycosylphosphatidylinositol-anchored proteins, while the inner leaflet contains proteins implicated in signalling, such as the acylated protein kinase p56lck and the palmitoylated adaptator LAT (linker for activation of T-cells). We present here an approach to study the lipid composition of rafts and its change upon T-cell activation. Our method is based on metabolic labelling of Jurkat T-cells with different precursors of glycerophospholipid synthesis, including glycerol and fatty acids with different lengths and degrees of saturation as well as phospholipid polar head groups. The results obtained indicate that lipid rafts isolated by the use of sucrose density-gradient centrifugation after Triton X-100 extraction in the cold, besides sphingolipids and cholesterol, contain unambiguously all classes of glycerophospholipids: phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and phosphatidylcholine. Fatty acid labelling shows that lipid rafts are labelled preferentially with saturated fatty acids while the rest of the plasma membrane incorporates mostly long-chained polyunsaturated fatty acids. To see whether the raft composition as measured by metabolic labelling of phospholipids is involved in T-cell activation, we investigated the production of sn-1,2-diacylglycerol (DAG) in CD3-activated cells. DAG production occurs within rafts, confirming previous demonstration of protein kinase C translocation into membrane microdomains. Our data demonstrate that raft disorganization by methyl-β-cyclodextrin impairs both CD3-induced DAG production and changes in cytosolic Ca2+ concentration. These lines of evidence support the conclusion that the major events in T-cell activation occur within or due to lipid rafts.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 1002-1010 ◽  
Author(s):  
Seiji Kobayashi ◽  
Kei Ohnuma ◽  
Masahiko Uchiyama ◽  
Kouichi Iino ◽  
Satoshi Iwata ◽  
...  

AbstractCD26 is a T-cell activation antigen that contains dipeptidyl peptidase IV activity and binds adenosine deaminase. Recent work showed that specialized membrane microdomains, also known as lipid rafts, play a key role in T-cell signaling. In this study, we investigate the role of CD26 in cord blood T-cell activation and signal transduction. We demonstrated that different expression levels of CD26 were observed between cord blood T cells (CBTCs) and peripheral blood T cells (PBTCs) and that CD26+CD45RA+ CBTCs were different compared with CD26+CD45RA+ PBTCs. Moreover, the comitogenic effect of CD26 was not as pronounced in CBTCs as in PBTCs. We also showed that CD26 cross-linking induced less phosphorylation of T-cell receptor-signaling molecules, lymphoid T-cell protein tyrosine kinase (Lck), zeta-associated protein 70 (ZAP-70), T-cell receptor ζ (TCRζ), and linker for activator of T cells (LAT) in CBTCs than in PBTCs. Furthermore, CD26 molecules associated with CD45RA molecules outside lipid rafts in CBTCs. Our results suggest that strong physical linkage of CD26 with CD45RA outside lipid rafts may be responsible for the attenuation of T-cell activation signaling through CD26, which may be responsible for immature immune response and the low incidence of severe graft-versus-host disease in cord blood transplantation. (Blood. 2004;103:1002-1010)


2007 ◽  
Vol 403 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Gonzalo P. Solis ◽  
Maja Hoegg ◽  
Christina Munderloh ◽  
Yvonne Schrock ◽  
Edward Malaga-Trillo ◽  
...  

Reggie-1 and -2 proteins (flotillin-2 and -1 respectively) form their own type of non-caveolar membrane microdomains, which are involved in important cellular processes such as T-cell activation, phagocytosis and signalling mediated by the cellular prion protein and insulin; this is consistent with the notion that reggie microdomains promote protein assemblies and signalling. While it is generally known that membrane microdomains contain large multiprotein assemblies, the exact organization of reggie microdomains remains elusive. Using chemical cross-linking approaches, we have demonstrated that reggie complexes are composed of homo- and hetero-tetramers of reggie-1 and -2. Moreover, native reggie oligomers are indeed quite stable, since non-cross-linked tetramers are resistant to 8 M urea treatment. We also show that oligomerization requires the C-terminal but not the N-terminal halves of reggie-1 and -2. Using deletion constructs, we analysed the functional relevance of the three predicted coiled-coil stretches present in the C-terminus of reggie-1. We confirmed experimentally that reggie-1 tetramerization is dependent on the presence of coiled-coil 2 and, partially, of coiled-coil 1. Furthermore, since depletion of reggie-1 by siRNA (small interfering RNA) silencing induces proteasomal degradation of reggie-2, we conclude that the protein stability of reggie-2 depends on the presence of reggie-1. Our data indicate that the basic structural units of reggie microdomains are reggie homo- and hetero-tetramers, which are dependent on the presence of reggie-1.


2002 ◽  
Vol 115 (12) ◽  
pp. 2603-2611 ◽  
Author(s):  
Martha Triantafilou ◽  
Kensuke Miyake ◽  
Douglas T. Golenbock ◽  
Kathy Triantafilou

The plasma membrane of cells is composed of lateral heterogeneities,patches and microdomains. These membrane microdomains or lipid rafts are enriched in glycosphingolipids and cholesterol and have been implicated in cellular processes such as membrane sorting and signal transduction. In this study we investigated the importance of lipid raft formation in the innate immune recognition of bacteria using biochemical and fluorescence imaging techniques. We found that receptor molecules that are implicated in lipopolysaccharide (LPS)-cellular activation, such as CD14, heat shock protein(hsp) 70, 90, Chemokine receptor 4 (CXCR4), growth differentiation factor 5(GDF5) and Toll-like receptor 4 (TLR4), are present in microdomains following LPS stimulation. Lipid raft integrity is essential for LPS-cellular activation, since raft-disrupting drugs, such as nystatin or MCD, inhibit LPS-induced TNF-α secretion. Our results suggest that the entire bacterial recognition system is based around the ligation of CD14 by bacterial components and the recruitment of multiple signalling molecules, such as hsp70, hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS ligation, within the lipid rafts.


1990 ◽  
Vol 110 (5) ◽  
pp. 1757-1766 ◽  
Author(s):  
W Risau ◽  
B Engelhardt ◽  
H Wekerle

The endothelial blood-brain barrier (BBB) has a critical role in controlling lymphocyte traffic into the central nervous system (CNS), both in physiological immunosurveillance, and in its pathological aberrations. The intercellular signals that possibly could induce lymphocytes to cross the BBB include immunogenic presentation of protein (auto-)antigens by BBB endothelia to circulating T lymphocytes. This concept has raised much, though controversial, attention. We approached this problem by analyzing in vitro immunospecific interactions between clonal rat T lymphocyte lines with syngeneic, stringently purified endothelial monolayer cultures from adult brain micro-vessels. The rat brain endothelia (RBE) were established from rat brain capillaries using double collagenase digestion, density gradient fractionation and selective cytolysis of contaminating pericytes by anti-Thy 1.1 antibodies and complement. Incubation with interferon-gamma in most of the brain-derived endothelial cells induced Ia-antigens in the cytoplasm and on the cell surface in some of the cells. Before the treatment, the cells were completely Ia-negative. Pericytes were unresponsive to IFN-gamma treatment. When confronted with syngeneic T cell lines specific for protein (auto-)antigens (e.g., ovalbumin and myelin basic protein, MBP), RBE were completely unable to induce antigen-specific proliferation of syngeneic T lymphocytes irrespective of pretreatment with IFN-gamma and of cell density. RBE were inert towards the T cells, and did not suppress T cell activation induced by other "professional" antigen presenting cells (APC) such as thymus-derived dendritic cells or macrophages. IFN-gamma-treated RBE were, however, susceptible to immunospecific T cell killing. They were lysed by MBP-specific T cells in the presence of the specific antigen or Con A. Antigen dependent lysis was restricted by the appropriate (MHC) class II product. We conclude that the interaction of brain endothelial cells with encephalitogenic T lymphocytes may involve recognition of antigen in the molecular context of relevant MHC products, but that this interaction per se is insufficient to initiate the full T cell activation program.


2008 ◽  
Vol 295 (5) ◽  
pp. G965-G976 ◽  
Author(s):  
Elena V. Vassilieva ◽  
Kirsten Gerner-Smidt ◽  
Andrei I. Ivanov ◽  
Asma Nusrat

Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of β1-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, β1-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent β1-integrin internalization. However, β1-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized β1-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased β1-integrin endocytosis. Our data suggest that, in migrating IEC, β1-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.


Haematologica ◽  
2020 ◽  
Vol 105 (11) ◽  
pp. 2550-2560
Author(s):  
Mahasweta Gooptu ◽  
John Koreth

Acute graft-versus-host disease (aGvHD) is induced by immunocompetent alloreactive T lymphocytes in the donor graft responding to polymorphic and non-polymorphic host antigens and causing inflammation in primarily the skin, gastrointestinal tract and liver. aGvHD remains an important toxicity of allogeneic transplantation, and the search for better prophylactic and therapeutic strategies is critical to improve transplant outcomes. In this review, we discuss the significant translational and clinical advances in the field which have evolved based on a better understanding of transplant immunology. Prophylactic advances have been primarily focused on the depletion of T lymphocytes and modulation of T-cell activation, proliferation, effector and regulatory functions. Therapeutic strategies beyond corticosteroids have focused on inhibiting key cytokine pathways, lymphocyte trafficking, and immunologic tolerance. We also briefly discuss important future trends in the field, the role of the intestinal microbiome and dysbiosis, as well as prognostic biomarkers for aGvHD which may improve stratification-based application of preventive and therapeutic strategies.


2007 ◽  
Vol 30 (6) ◽  
pp. 421-429 ◽  
Author(s):  
Ying Waeckerle-Men ◽  
Astrid Starke ◽  
Patricia R. Wahl ◽  
Rudolf P. Wüthrich

Sign in / Sign up

Export Citation Format

Share Document