Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis

1976 ◽  
Vol 22 (3) ◽  
pp. 575-583
Author(s):  
K.E. Johnson

Circus movements, which involve the circumferential rotation of a hyaline cytoplasmic protrusion, occur in cells obtained by EDTA dissociation of gastrula-stage Xenopus laevis embryos. Only a few dissociated blastula-stage cells show circus movements, more early gastrula-stage cells show them, and nearly all late gastrula-stage cells show them. Circus movements cease in cells prior to mitosis and begin again in daughter cells after mitosis is completed. In early gastrulae, only 17% of prospective endodermal cells show circus movements while 79% of prospective mesodern, archenteric roof, and posterior neural ectoderm do so. Isolated cells as well as groups of cells in vitro are often propelled by circus movements. There is an obvious antagonism between cell contact and circus movements. The morphogenetic significance of circus movements and blebbing locomotion is discussed.

Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 675-683 ◽  
Author(s):  
J.P. Saint-Jeannet ◽  
F. Foulquier ◽  
C. Goridis ◽  
A.M. Duprat

The appearance and localization of N-CAM during neural induction were studied in Pleurodeles waltl embryos and compared with recent contradictory results reported in Xenopus laevis. A monoclonal antibody raised against mouse N-CAM was used. In the nervous system of Pleurodeles, it recognized two glycoproteins of 180 and 140×10(3) M(r) which are the Pleurodeles equivalent of N-CAM-180 and -140. Using this probe for immunohistochemistry and immunocytochemistry, we showed that N-CAM was already expressed in presumptive ectoderm at the early gastrula stage. In late gastrula embryos, a slight increase in staining was observed in the neurectoderm, whereas the labelling persisted in the noninduced ectoderm. When induced ectodermal cells were isolated at the late gastrula stage and cultured in vitro up to 14 days, a faint polarized labelling of cells was observed initially. During differentiation, the staining increased and became progressively restricted to differentiating neurons.


2001 ◽  
Vol 204 (15) ◽  
pp. 2667-2673 ◽  
Author(s):  
Heli Teerijoki ◽  
Aleksei Krasnov ◽  
Yuri Gorodilov ◽  
Sanjeev Krishna ◽  
Hannu Mölsä

SUMMARY Recently, we reported the cloning of a putative glucose transporter (OnmyGLUT1) from rainbow trout embryos. In this paper, we describe the functional characteristics of OnmyGLUT1 and its expression during embryonic development of rainbow trout. Transport of d-glucose was analysed in Xenopus laevis oocytes following microinjection of mRNA transcribed in vitro. These experiments confirmed that OnmyGLUT1 is a facilitative Na+-independent transporter. Assessment of substrate selectivity, sensitivity to cytochalasin B and phloretin and kinetic parameters showed that the rainbow trout glucose transporter was similar to a carp transporter and to mammalian GLUT1. Embryonic expression of OnmyGLUT1 was studied using whole-mount in situ hybridization. Ubiquitous distribution of transcripts was observed until the early phase of somitogenesis. During the course of organogenesis, somitic expression decreased along the rostro-caudal axis, finally ceasing in the mature somites. The OnmyGLUT1 transcripts were detected in the neural crest during the whole study period. Transcripts were also found in structures that are likely to originate from the neural crest cells (gill arches, pectoral fins, upper jaw, olfactory organs and primordia of mouth lips). Hexose transport activity was detected at all developmental stages after blastulation. Cytochalasin B blocked the accumulation of phosphorylated 2-deoxy-d-glucose by dissociated embryonic cells, suggesting an important role for transport in glucose metabolism.


2010 ◽  
Vol 22 (1) ◽  
pp. 238 ◽  
Author(s):  
G. Gamarra ◽  
D. Le Bourhis ◽  
L. Gall ◽  
L. Laffont ◽  
S. Ruffini ◽  
...  

Genomic tools have now become available for most livestock species and are being used routinely for marker-assisted selection in cattle. One major challenge in bovine selection is the possibility to detect multiple markers from biopsies of pre-implantation stage embryos which allows to transfer only selected embryos following genotyping. Preliminary studies have shown that 2 ng of DNA collected from 200 embryonic cells (hatched blastocyst) may be sufficient for genotyping based on few markers (<100). However, the present genotyping techniques are much more demanding in terms of DNA. The aim of this work was to test different in vitro culture conditions of biopsied cells issued from bovine blastocysts to produce a large number of cells for genotyping. Bovine embryos were produced in vitro according to a standard protocol (Menck M et al. 1997 Reprod. Nutr. Dev. 37, 141-150). Only grade 1 embryos were biopsied using a microblade under a stereomicroscope. Biopsies had from 5 to 10 cells. Biopsied embryos were in vitro cultured in B2 + 2.5% FCS seeded with VERO cells for 48 h to assess the survival rate. Individual biopsies were cultured in vitro in 4-well culture dishes (Nunc) coated with collagen type 1 at 39°C in a humidified air atmosphere and 5% CO2 under 3 medium conditions. Intact hatched Days 8 to 10 blastocysts were cultured under the same conditions as controls. In condition 1, 43 biopsies and 35 control blastocysts were cultured in DMEM/F12 + 10% FCS and 0.25% ITS (insulin, rransferrin, selenium). In condition 2, 30 biopsies and 35 control blastocysts were cultured in DMEM/F12 + 20% FCS supplemented with 1 mM sodium pyruvate, 1 μg mL-1 of heparin, and 1 μg mL-1 of FGF4. In condition 3, 30 biopsies and 43 control blastocysts were cultured in a complex medium composed of 30% of [DMEM/F12 + 20% FCS] and 70% [DMEM/F12 + 20% FCS conditioned medium using mitomycined VERO cells] supplemented with 1 mM sodium pyruvate, 1.5 μg mL-1 of heparin, and 1.5 μg mL-1 of FGF4 (adapted from Oda et al. 2006 Methods Enzymol. 419, 387-400). Medium was replaced every 3 days. Outgrowths were physically detached and isolated cells were cultured using condition 3. For further passages, monolayers were trypsinized (0.025%) and cells were analyzed by immunofluorescence using anti-cytokeratin 1-8 antibodies. After biopsy and 48 h of in vitro culture, 97.1% (100/103) of embryos survived. For all culture conditions, none of the biopsied cells attached to the coated dishes and no colony were observed after culture. Control intact blastocysts adhered and formed significantly lower rate of outgrowths for condition 1 v. 2 and 3: 77.1% v. 85.7% and 93%, respectively (P < 0.05). After several passages, 3 cell lines were produced and we observed a network of cytokeratin filaments by immunofluorescence suggesting an epithelial cell type for this network. These results show that production of a large number of cells from biopsies was not efficient enough for genotyping. However, the 3 tested culture conditions are favorable for the production and multiplication of cells from intact bovine blastocysts and condition 3 seems to be a suitable medium condition for embryonic cell culture.


2019 ◽  
Vol 218 (12) ◽  
pp. 4063-4078 ◽  
Author(s):  
Pan Chen ◽  
Miroslav Tomschik ◽  
Katherine M. Nelson ◽  
John Oakey ◽  
Jesse C. Gatlin ◽  
...  

How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.


2005 ◽  
Vol 288 (4) ◽  
pp. C872-C880 ◽  
Author(s):  
Andreas Bergdahl ◽  
Maria F. Gomez ◽  
Anna-Karin Wihlborg ◽  
David Erlinge ◽  
Atli Eyjolfson ◽  
...  

Loss of the smooth muscle contractile phenotype is critical in atherosclerosis and in restenosis after angioplasty, but its early signals are incompletely understood. In this study, we have explored the role of transient receptor potential canonical (TRPC) proteins, which have been suggested to mediate store-operated Ca2+ entry (SOCE). Contractility of rat cerebral arteries in organ culture is preserved for several days, whereas SOCE is increased. In correlation with this increase is that nifedipine-insensitive whole cell current, activated by depletion of intracellular Ca2+ stores, was increased by 50% in cells isolated from arteries cultured for 3 days. TRPC1 and TRPC6 mRNA were more than fivefold increased in cells isolated after organ culture, whereas TRPC3 was decreased. Immunofluorescent staining and/or Western blotting of arteries and isolated cells showed upregulation of TRPC1 and TRPC6 proteins during organ culture. In intact arteries, TRPC4 expression correlated with the amount of endothelium present. Ca2+ addition after store depletion caused a contraction in cultured, but not in freshly dissected, arteries. A polyclonal TRPC1 antibody directed against an extracellular epitope inhibited this contraction by ∼50%. To investigate the basis of the TRPC upregulation and assess its possible clinical significance, segments of human internal mammary artery were organ cultured for 24 h and then exposed to balloon dilatation in vitro, followed by further culturing for up to 48 h. After dilatation, TRPC1 and TRPC6 mRNA were progressively increased compared with undilated control segments. The results of this study indicate that vascular injury enhances plasticity in TRPC expression, that TRPC expression correlates with cellular Ca2+ handling, and that TRPC1 is a subunit of upregulated store-operated Ca2+ channels.


Development ◽  
1998 ◽  
Vol 125 (8) ◽  
pp. 1457-1468 ◽  
Author(s):  
A.K. Hatzopoulos ◽  
J. Folkman ◽  
E. Vasile ◽  
G.K. Eiselen ◽  
R.D. Rosenberg

The cardiovascular system develops early in embryogenesis from cells of mesodermal origin. To study the molecular and cellular processes underlying this transition, we have isolated mesodermal cells from murine embryos at E7.5 with characteristic properties of endothelial progenitors by using a combination of stromal cell layers and growth conditions. The isolated embryonic cells displayed unlimited stem-cell-like growth potential and a stable phenotype in culture. RNA analysis revealed that the embryonic cells express the endothelial-specific genes tie-2 and thrombomodulin (TM) as well as the early mesodermal marker fgf-3. The GSL I-B4 isolectin, a marker of early endothelial cells, specifically binds to the isolated cells. The in vitro differentiation with retinoic acid and cAMP led to a 5- to 10-fold induction of flk-1, von Willebrand Factor (vWF), TM, GATA-4 and GATA-6. Electron microscopy revealed that in vitro differentiation is associated with increased amounts of rER and Golgi, and a dramatic increase in secretory vesicles packed with vWF. When cultured in Matrigel, the embryonic cells assume the characteristic endothelial cobblestone morphology and form tubes. Injection into chicken embryos showed incorporation of the embryonic cells in the endocardium and the brain vasculature. The expression of TM, tie-2, GATA-4 and GATA-6 suggests that the isolated embryonic endothelial cell progenitors are derived from the proximal lateral mesoderm where the pre-endocardial tubes form. The properties of the endothelial cell progenitors described here provide a novel approach to analyze mediators, signaling pathways and transcriptional control in early vascular development.


1970 ◽  
Vol 44 (3) ◽  
pp. 592-610 ◽  
Author(s):  
M. V. L. Bennett ◽  
J. P. Trinkaus

The meroblastic egg of the teleost, Fundulus heteroclitus, was studied electrophysiologically from cleavage to mid-gastrula stages. The yolk is an intracellular inclusion surrounded by a membrane of high resistivity (50 kΩcm2). This membrane generates a cytoplasm-negative resting potential in later stages. Cells of all stages studied are coupled electrically. In gastrulae, coupling is both by way of specialized junctions between cells and by way of intra-embryonic extracellular space, the segmentation cavity. The latter mode is present because the segmentation cavity is sealed off from the exterior by a high resistance barrier, and the outer membrane of surface cells is of high resistance (50–100 kΩcm2) compared to the inner membrane. It can be inferred that clefts between surface cells are occluded by circumferential junctions. Isolated cells from late cleavage stages develop coupling in vitro, confirming the existence of coupling by way of intercellular junctions. Both modes of coupling could mediate communication between cells that is important in embryonic development.


Development ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 149-161
Author(s):  
Janet Heasman ◽  
Tim Mohun ◽  
C. C. Wylie

The mechanism of embryonic cell movement is poorly understood. Primordial germ cells (PGCs) of the anuran amphibian Xenopus laevis migrate individually from their site of determination in the embryonic endoderm to their site of differentiation, in the developing gonad. PGCs have been isolated during their migratory phase from tadpoles, and their movement studied in vitro on a variety of natural and artificial substrates. On all artificial substrates used, including acid-washed glass, tissue-culture plastics, poly-L-Iysine-coated glass, and collagen, the PGCs move by amoeboid extrusion of hemispherical lobopodia. Several considerations make it unlikely that this is the mechanism employed in vivo. On living cellular substrates, e.g. monolayers of Xenopus laevis embryonic cells, adult kidney cells, and adult mesentery cells, PGCs become firmly attached and undergo phases of elongation and contraction. They move by elongation, coupled with the extrusion of filopodia, followed by waves of contraction, and ultimately by retraction of the trailing end of the cell. Evidence is presented that this is the mode of locomotion normally employed by PGCs in vivo.


1981 ◽  
Vol 49 (1) ◽  
pp. 205-216
Author(s):  
K.E. Johnson ◽  
M.R. Adelman

Circus movements, involving circumferential rotation of a hyaline cytoplasmic blister and endoplasmic flow, occur in EDTA-dissociated gastrula stage Rana pipiens embryos. Such cell movements occur in very few cells taken from pre-gastrula stage embryos. During gastrulation, there is a progressive increase in the proportion of a population of cells that is engaged in circus movements. Circus movements do not occur in dividing cells. Individual cells in culture, as well as small clusters of cells in vitro, are jostled about in an apparently aimless fashion over short distances by circus movements, although the translocation of masses of cells over long distances is substantially greater than the translocation of isolated cells. In an early gastrula stage normal embryo, cells from around the site of blastopore invagination are most active in circus movements. Cells taken from different stages of arrested hybrid embryos show variable depression in the formation of rotating hyaline blebs. Aggregates of cells from arrested hybrid embryos are also relatively immobile in culture. The morphogenetic significance of circus movements in normal embryos and gastrula-arrest hybrid embryos is discussed.


1995 ◽  
Vol 128 (1) ◽  
pp. 209-221 ◽  
Author(s):  
M K Byeon ◽  
Y Sugi ◽  
R R Markwald ◽  
S Hoffman

Previous studies of neural cell adhesion molecule (NCAM) cDNAs have revealed an alternatively spliced set of small exons (12A, 12B, 12C, and 12D) that encode a region in the extracellular portion of the molecule known as the muscle-specific domain (MSD). The entire MSD region can be expressed in skeletal muscle, heart, and skin; only exons 12A and 12D have been found in brain. These studies did not reveal which NCAM polypeptides contain the MSD region or the immunohistochemical distribution of these NCAM molecules. To address these questions, we prepared antibodies against the oligopeptides encoded by exons 12A and 12B and by exons 12C and 12D, and we used these antibodies to study the forms of NCAM containing the MSD region expressed during embryonic chicken heart development. These antibodies recognize certain forms of NCAM found in the heart, but they do not recognize brain NCAM. In the heart, each of the splice variants of NCAM (large cytoplasmic domain, small cytoplasmic domain, and small surface domain) that differ in their mode of attachment to the plasma membrane or in the size of their cytoplasmic domain is expressed in a form that contains and in a form that lacks the MSD region. No microheterogeneity is observed in the size of NCAM molecules containing the MSD region, even at the level of cyanogen bromide fragments, suggesting that exons 12A-D are expressed as a single unit. Depending on the site and the stage of development, the percent of NCAM molecules containing the MSD region can vary from nearly 0 to 100%. In general, this percentage increases during development. In immunohistochemical studies of hearts from stage 18 embryos, forms of NCAM containing the MSD region colocalized with Z discs. No other adhesion molecules were found in this distribution at this early stage of development. Studies on isolated cells in vitro demonstrate that the colocalization with Z discs of NCAM molecules containing the MSD region does not depend on cell-cell contact, and they raise the possibility that this form of NCAM is involved in cell-extracellular matrix interactions. The association of NCAM molecules containing the MSD region with Z discs suggests that this form of NCAM is involved in early myofibrillogenesis.


Sign in / Sign up

Export Citation Format

Share Document