scholarly journals Local inhibition of rRNA transcription without nucleolar segregation after targeted ion irradiation of the nucleolus

2019 ◽  
Vol 132 (19) ◽  
pp. jcs232181 ◽  
Author(s):  
Christian Siebenwirth ◽  
Christoph Greubel ◽  
Guido A. Drexler ◽  
Judith Reindl ◽  
Dietrich W. M. Walsh ◽  
...  
2015 ◽  
Vol 43 (10) ◽  
pp. 4975-4989 ◽  
Author(s):  
Miiko Sokka ◽  
Kirsi Rilla ◽  
Ilkka Miinalainen ◽  
Helmut Pospiech ◽  
Juhani E. Syväoja

Author(s):  
Julio H. Garcia ◽  
Janice P. Van Zandt

Repeated administration of methyl alcohol to Rhesus monkeys (Maccaca mulata) by intragastric tube resulted in ultrastructural abnormalities of hepatocytes, which persisted in one animal twelve weeks after discontinuation of the methyl alcohol regime. With dosages ranging between 3.0 to 6.0 gms. of methanol per kg. of body weight, the serum levels attained within a few hours averaged approximately 475 mg. per cent.


Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


Author(s):  
D. L. Medlin ◽  
T. A. Friedmann ◽  
P. B. Mirkarimi ◽  
M. J. Mills ◽  
K. F. McCarty

The allotropes of boron nitride include two sp2-bonded phases with hexagonal and rhombohedral structures (hBN and rBN) and two sp3-bonded phases with cubic (zincblende) and hexagonal (wurtzitic) structures (cBN and wBN) (Fig. 1). Although cBN is synthesized in bulk form by conversion of hBN at high temperatures and pressures, low-pressure synthesis of cBN as a thin film is more difficult and succeeds only when the growing film is simultaneously irradiated with a high flux of ions. Only sp2-bonded material, which generally has a disordered, turbostratic microstructure (tBN), will form in the absence of ion-irradiation. The mechanistic role of the irradiation is not well understood, but recent work suggests that ion-induced compressive film stress may induce the transformation to cBN.Typically, BN films are deposited at temperatures less than 1000°C, a regime for which the structure of the sp2-bonded precursor material dictates the phase and microstructure of the material that forms from conventional (bulk) high pressure treatment.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


2012 ◽  
Vol 21 (1) ◽  
pp. 15-21
Author(s):  
Merete Bakke ◽  
Allan Bardow ◽  
Eigild Møller

Severe drooling is associated with discomfort and psychosocial problems and may constitute a health risk. A variety of different surgical and non-surgical treatments have been used to diminish drooling, some of them with little or uncertain effect and others more effective but irreversible or with side effects. Based on clinical evidence, injection with botulinum toxin (BTX) into the parotid and submandibular glands is a useful treatment option, because it is local, reversible, and with few side effects, although it has to be repeated. The mechanism of BTX is a local inhibition of acetylcholine release, which diminishes receptor-coupled secretion and results in a flow rate reduction of 25–50% for 2–7 months.


2002 ◽  
Vol 82 (11) ◽  
pp. 2333-2339
Author(s):  
G. Schumacher ◽  
R. C. Birtcher ◽  
D. P. Renusch ◽  
M. Grimsditch ◽  
L. E. Rehn

Sign in / Sign up

Export Citation Format

Share Document