scholarly journals Activation of meiotic recombination by nuclear import of the DNA break hotspot-determining complex in fission yeast

2021 ◽  
Vol 134 (4) ◽  
pp. jcs253518 ◽  
Author(s):  
Mélody Wintrebert ◽  
Mai-Chi Nguyen ◽  
Gerald R. Smith

ABSTRACTMeiotic recombination forms crossovers important for proper chromosome segregation and offspring viability. This complex process involves many proteins acting at each of the multiple steps of recombination. Recombination initiates by formation of DNA double-strand breaks (DSBs), which in the several species examined occur with high frequency at special sites (DSB hotspots). In Schizosaccharomyces pombe, DSB hotspots are bound with high specificity and strongly activated by linear element (LinE) proteins Rec25, Rec27 and Mug20, which form colocalized nuclear foci with Rec10, essential for all DSB formation and recombination. Here, we test the hypothesis that the nuclear localization signal (NLS) of Rec10 is crucial for coordinated nuclear entry after forming a complex with other LinE proteins. In NLS mutants, all LinE proteins were abundant in the cytoplasm, not the nucleus; DSB formation and recombination were much reduced but not eliminated. Nuclear entry of limited amounts of Rec10, apparently small enough for passive nuclear entry, can account for residual recombination. LinE proteins are related to synaptonemal complex proteins of other species, suggesting that they also share an NLS, not yet identified, and undergo protein complex formation before nuclear entry.This article has an associated First Person interview with Mélody Wintrebert, joint first author of the paper.

Author(s):  
Mélody Wintrebert ◽  
Mai-Chi Nguyen ◽  
Gerald R. Smith

AbstractMeiotic recombination forms crossovers important for proper chromosome segregation and viability of offspring. This process involves many proteins acting at each of the multiple steps of recombination. Recombination is initiated by formation of DNA double-strand breaks (DSBs), which in the several species examined often occur with high frequency at special sites (DSB hotspots). In the fission yeast Schizosaccharomyces pombe DSB hotspots are bound with high specificity and activated by linear element (LinE) proteins Rec25, Rec27, and Mug20 which form co-localized nuclear foci with Rec10, essential for all DSB formation and recombination. Here, we identify Rec10’s nuclear localization signal (NLS) and show it is important for coordinated nuclear entry after complex-formation with other LinE proteins. In NLS mutants, recombination is much reduced but not eliminated; nuclear entry of limited amounts of Rec10 can account for the residual recombination. LinEs are related to synaptonemal complex proteins of other species, suggesting that they also may share an as-yet-unidentified NLS and protein complex-formation before nuclear entry.


2006 ◽  
Vol 34 (4) ◽  
pp. 523-525 ◽  
Author(s):  
S. Keeney ◽  
M.J. Neale

Homologous recombination is essential for accurate chromosome segregation during meiosis in most sexual organisms. Meiotic recombination is initiated by the formation of DSBs (DNA double-strand breaks) made by the Spo11 protein. We review here recent findings pertaining to protein–protein interactions important for DSB formation, the mechanism of an early step in the processing of Spo11-generated DSBs, and regulation of DSB formation by protein kinases.


2017 ◽  
Author(s):  
Charles J. Underwood ◽  
Kyuha Choi ◽  
Christophe Lambing ◽  
Xiaohui Zhao ◽  
Heïdi Serra ◽  
...  

AbstractEukaryotic centromeres contain the kinetochore, which connects chromosomes to the spindle allowing segregation. During meiosis centromeres are suppressed for crossovers, as recombination in these regions can cause chromosome mis-segregation. Plant centromeres are surrounded by repetitive, transposon-dense heterochromatin that is epigenetically silenced by histone 3 lysine 9 dimethylation (H3K9me2), and DNA methylation in CG and non-CG sequence contexts. Here we show that disruption of Arabidopsis H3K9me2 and non-CG DNA methylation pathways increases meiotic DNA double strand breaks (DSBs) within centromeres, whereas crossovers increase within pericentromeric heterochromatin. Increased pericentromeric crossovers in H3K9me2/non-CG mutants occurs in both inbred and hybrid backgrounds, and involves the interfering crossover repair pathway. Epigenetic activation of recombination may also account for the curious tendency of maize transposon Ds to disrupt CHROMOMETHYLASE3 when launched from proximal loci. Thus H3K9me2 and non-CG DNA methylation exert differential control of meiotic DSB and crossover formation in centromeric and pericentromeric heterochromatin.


Science ◽  
2017 ◽  
Vol 355 (6320) ◽  
pp. 40-45 ◽  
Author(s):  
Eleni P. Mimitou ◽  
Shintaro Yamada ◽  
Scott Keeney

DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5′→3′ resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution inSaccharomyces cerevisiae. Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but not Sgs1 helicase. Tel1 also promotes efficient and timely resection initiation. Resection endpoints display pronounced heterogeneity between genomic loci that reflects a tendency for nucleosomes to block Exo1, yet Exo1 also appears to digest chromatin with high processivity and at rates similar to naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a defining feature of the meiotic resection landscape.


2017 ◽  
Author(s):  
James H. Crichton ◽  
Christopher J. Playfoot ◽  
Marie MacLennan ◽  
David Read ◽  
Howard J. Cooke ◽  
...  

AbstractMeiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that meiotic DSB frequency in mouse spermatocytes is regulated by the mammal-specific gene Tex19.1. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for the generation of normal levels of Spo11-dependent DNA damage during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in the E3 ubiquitin ligase UBR2, a TEX19.1-interacting partner, phenocopy the Tex19.1-/- recombination defects. These data show that Tex19.1 and Ubr2 are required for mouse spermatocytes to generate sufficient meiotic DSBs to ensure that homology search is consistently successful, and reveal a hitherto unknown genetic pathway regulating meiotic DSB frequency in mammals.Author SummaryMeiosis is a specialised type of cell division that occurs during sperm and egg development to reduce chromosome number prior to fertilisation. Recombination is a key step in meiosis as it facilitates the pairing of homologous chromosomes prior to their reductional division, and generates new combinations of genetic alleles for transmission in the next generation. Regulating the amount of recombination is key for successful meiosis: too much will likely cause mutations, chromosomal re-arrangements and genetic instability, whereas too little causes defects in homologous chromosome pairing prior to the meiotic divisions. This study identifies a genetic pathway requiredto generate robust meiotic recombination in mouse spermatocytes. We show that male mice with mutations in Tex19.1 or Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, have defects in generating normal levels of meiotic recombination. We show that the defects in these mutants impact on the recombination process at the stage when programmed DNA double strand breaks are being made. This defect likely contributes to the chromosome synapsis and meiotic progression phenotypes previously described in these mutant mice. This study has implications for our understanding of how this fundamental aspect of genetics and inheritance is controlled.


2021 ◽  
Author(s):  
Fabien Dutreux ◽  
Abhishek Dutta ◽  
Emilien Peltier ◽  
Sabrina Bibi-Triki ◽  
Anne Friedrich ◽  
...  

Meiotic recombination has been deeply characterized in a few model species only, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, most members of the ZMM pathway that implements meiotic crossover interference in S. cerevisiae have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. This suggests major differences in the control of crossover distribution. After investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii and identified several characteristics that should help understand better the underlying mechanisms. Such characteristics include systematic regions of loss of heterozygosity (LOH) in L. waltii hybrids, compatible with dysregulated Spo11-mediated DNA double strand breaks (DSB) independently of meiosis. They include a higher recombination rate in L. waltii than in L. kluyveri despite the lack of multiple ZMM pro-crossover factors. L. waltii exhibits an elevated frequency of zero-crossover bivalents as L. kluyveri but opposite to S. cerevisiae. L. waltii gene conversion tracts lengths are comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tracts size in S. cerevisiae. L. waltii recombination hotspots are not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, in line with the loss of several ZMM genes, we found only residual crossover interference in L. waltii likely coming from the modest interference existing between recombination precursors.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009663
Author(s):  
Maria Velkova ◽  
Nicola Silva ◽  
Maria Rosaria Dello Stritto ◽  
Alexander Schleiffer ◽  
Pierre Barraud ◽  
...  

Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis.


2006 ◽  
Vol 27 (5) ◽  
pp. 1868-1880 ◽  
Author(s):  
Nicolas Robine ◽  
Norio Uematsu ◽  
Franck Amiot ◽  
Xavier Gidrol ◽  
Emmanuel Barillot ◽  
...  

ABSTRACT Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spo11 protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spo11 with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spo11 to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spo11.


2018 ◽  
Vol 115 (10) ◽  
pp. 2437-2442 ◽  
Author(s):  
Heïdi Serra ◽  
Christophe Lambing ◽  
Catherine H. Griffin ◽  
Stephanie D. Topp ◽  
Divyashree C. Nageswaran ◽  
...  

During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.


Sign in / Sign up

Export Citation Format

Share Document