scholarly journals Regulation of interstitial cell differentiation in Hydra attenuata. III. Effects of I-cell and nerve cell densities

1978 ◽  
Vol 34 (1) ◽  
pp. 1-26
Author(s):  
M.S. Yaross ◽  
H.R. Bode

The interstitial cell (i-cell) of hydra, a multipotent stem cell, produces two classes of differentiated cell types, nerve cells and nematocytes, throughout asexual growth. Using a new assay, the regulation of i-cell commitment to either nerve cell or nematocyte differentiation was investigated. This assay was used to determine the fractions of i-cells differentiating into nerve cells and nematocyte precursors in a variety of in vivo cellular milieus produced by hydroxyurea treatment, differential feeding, and reaggregation of dissociated cells. Nematocyte commitment was found to be positively correlated with the size of the i-cell population and independent of the axial position of the i-cells along the body column. This indicates that i-cell commitment to nematocyte differentiation may be regulated by feedback from the i-cell population. Nerve cell commitment was found to be correlated with regions of high nerve cell density. This suggests that nerve cell commitment is regulated by feedback from the nerve cell population or is dependent on axial position. Implications of such mechanisms for the regulation of i-cell population size and distribution are discussed.

1981 ◽  
Vol 52 (1) ◽  
pp. 85-98
Author(s):  
S. Heimfeld ◽  
H.R. Bode

The interstitial cell of hydra is a multipotent stem cell, which produces nerve cells as one of its differentiated cell types. The amount of interstitial cell commitment to nerve differentiation varies in an axially dependent pattern along the body column. The distribution of nerve cell density has the same equivalent axial pattern. These facts have led to speculation that the regulation of nerve cell commitment is dictated by the nerve cell density. We examined this question by assaying interstitial cell commitment behaviour in 2 cases where the normal nerve cell density of the tissue had been perturbed: (1) in epithelial hydra in which no nerve cells were present; and (2) in hydra derived from regenerating-tip isolates in which the nerve density was increased nearly 4-fold. We found no evidence of regulation of nerve cell commitment in response to the abnormal nerve cell densities. However, the typical axial pattern of nerve commitment was still obtained in both sets of experiments, which suggests that interstitial cell commitment to nerve differentiation is dependent on some parameter of axial location that is not associated directly with the local nerve cell density.


1978 ◽  
Vol 34 (1) ◽  
pp. 27-38
Author(s):  
M.S. Yaross ◽  
H.R. Bode

In hydra, nerve cells are a differentiation product of the interstitial cell, a multipotent stem cell. Nerve cell commitment was examined during head regeneration in Hydra attenuata. Within 3 h of head removal there is a 10- to 20-fold increase in nerve cell commitment in the tissue which subsequently forms the new head. Nerve cell commitment is unaltered in the remainder of the gastric region. This local increase in nerve cell commitment is responsible for about one half the new nerve cells formed during head regeneration, while one half differentiate from interstitial cells that migrate into the regenerating tip.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 569-576 ◽  
Author(s):  
G. Hager ◽  
C.N. David

The nervous system of the fresh water polyp hydra is built up as a nerve net spread over the whole body, with higher densities in the head and the foot. In adult hydra, as a result of continuous growth, new nerve cell differentiation takes place continuously. The pattern of nerve cell differentiation and the role of nerve cell precursor migration in establishing the pattern have been observed in vivo by vitally labelling precursor cells with DiI. The results indicate that nerve cell precursors arise directly from stem cells, complete a final cell cycle and divide, giving rise to two daughter cells, which differentiate into nerve cells. A subpopulation of the nerve cell precursors are migratory for a brief interval at the onset of the terminal cell cycle, then complete the cell cycle and divide at the site of differentiation. Labelling small patches of tissue in the head, body column and peduncle/foot with DiI indicated that formation of nerve cell precursors was nearly constant at all three positions. However, at least half of the labelled precursors in the body column migrated to the head or foot before differentiating; by contrast, precursors in head and foot differentiated in situ without significant migration. This redistribution leads to a net increase of nerve cell precursors in head and foot compared to body column and thus to the higher density of nerve cells in these regions.


1976 ◽  
Vol 20 (1) ◽  
pp. 29-46 ◽  
Author(s):  
H.R. Bode ◽  
K.M. Flick ◽  
G.S. Smith

Mechanisms regulating the population size of the multipotent interstitial cell (i-cell) in Hydra attenuata were investigated. Treatment of animals with 3 cycles of a regime of 24 h in 10-2 M hydroxyurea (HU) alternated with 12 h in culture medium selectively killed 95–99% of the i-cells, but had little effect on the epithelial cells. The i-cell population recovered to the normal i-cell:epithelial cell ratio of I:I within 35 days. Continuous labelling experiments with [3H]thymidine indicate that the recovery of the i-cell population is not due to a change in the length of the cell cycle of either the epithelial cells or the interstitial cells. In control animals 60% of the i-cell population undergo division daily while 40% undergo differentiation. Quantification of the cell types of HU-treated animals indicates that a greater fraction of the i-cells were dividing and fewer differentiating into nematocytes during the first 2 weeks of the recovery after HU treatment. Therefore, the mechanism for recovery involves a shift of the 60:40 division:differentiation ratio of i-cells towards a higher fraction in division until the normal population size of the i-cells is regained. This homeostatic mechanism represents one of the influences affecting i-cell differentiation.


1979 ◽  
Vol 149 (5) ◽  
pp. 1260-1264 ◽  
Author(s):  
M Kasai ◽  
JC Leclerc ◽  
L McVay-Boudreau ◽  
FW Shen ◽  
H Cantor

Relatively large numbers of nonimmune spleen cells do not protect against the local growth of two lymphomas. However, this heterogeneous population of splenic lymphocytes contains a subset of cells that efficiently protects against in vivo tumor growth. This cell population (cell-surface phenotype Thyl.2(-)Ig(-)Ly5.1(+)) represents less than 5 percent of the spleen cell population and is responsible for in vitro NK-mediated lysis. Although these studies clearly and directly demonstrate that Ly5(+) NK cells selected from a heterogeneous lymphoid population from nonimmune mice can protect syngeneic mice against local in vivo growth of two different types of tumor cells (in contrast to other lymphocyte sets within the spleen), they do not directly bear upon the role of NK cells in immunosurveillance. They do indicate that highly enriched Ig(-)Thyl(-)Ly5(+) cells, which account for virtually all in vitro NK activity, can retard tumor growth in vivo. It is difficult to ascribe all anti-tumor surveillance activity to NK cells, because they probably do not recirculate freely throughout the various organ systems of the body. Perhaps NK ceils may play a role in prevention of neoplastic growth within discrete anatomic compartments where there is rapid differentiation of stem cells to mature progeny (e.g., bone marrow, spleen, and portions of the gastrointestinal tract)and may normally act to regulate the growth and differentiation of non-neoplastic stem cells. Long-term observation of chimeric mice repopulated with bone marrow from congenic or mutant donors expressing very low or very high NK activity may help to answer these questions.


Development ◽  
1980 ◽  
Vol 60 (1) ◽  
pp. 373-387
Author(s):  
Stefan Berking

Budding in Hydra starts as an evagination of the double-layered tissue in the parent animal's gastric region. Five hours later the density of nerve cells in the bud's tissue doubles, representing the first detectable difference from the cellular composition of the surrounding tissue. These new nerve cells derive from multipotent stem cells which are in S-phase one day before evagination starts. Some of the bud's new nerve cells derive from stem cells which have migrated into the future bud's tissue after their commitment, apparently attracted by the bud anlage. The bud anlage recruits precursors of nerve cells even during starvation, during which nerve cell production ceases in other parts of the body. Furthermore, the bud anlage controls the duration of the development from commitment to final differentiation of the resulting nerve cells. Experiments with an inhibitor purified from hydra tissue indicate a tight correlation between stages of preparatory bud development and stages of recruitment of nerve cells for the bud. Whether or not precursors of nerve cells are involved in the control of bud formation in normal hydra, as compared to epithelial hydra which still bud though consisting of epithelial cells only, will be discussed.


2019 ◽  
Vol 51 (10) ◽  
pp. 1-13 ◽  
Author(s):  
Qian Zhang ◽  
Changpeng Hu ◽  
Jingbin Huang ◽  
Wuyi Liu ◽  
Wenjing Lai ◽  
...  

Abstract Dopamine deficiency is mainly caused by apoptosis of dopaminergic nerve cells in the substantia nigra of the midbrain and the striatum and is an important pathologic basis of Parkinson’s disease (PD). Recent research has shown that dynamin-related protein 1 (Drp1)-mediated aberrant mitochondrial fission plays a crucial role in dopaminergic nerve cell apoptosis. However, the upstream regulatory mechanism remains unclear. Our study showed that Drp1 knockdown inhibited aberrant mitochondrial fission and apoptosis. Importantly, we found that ROCK1 was activated in an MPP+-induced PD cell model and that ROCK1 knockdown and the specific ROCK1 activation inhibitor Y-27632 blocked Drp1-mediated aberrant mitochondrial fission and apoptosis of dopaminergic nerve cells by suppressing Drp1 dephosphorylation/activation. Our in vivo study confirmed that Y-27632 significantly improved symptoms in a PD mouse model by inhibiting Drp1-mediated aberrant mitochondrial fission and apoptosis. Collectively, our findings suggest an important molecular mechanism of PD pathogenesis involving ROCK1-regulated dopaminergic nerve cell apoptosis via the activation of Drp1-induced aberrant mitochondrial fission.


Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 897-904 ◽  
Author(s):  
E. Hobmayer ◽  
T.W. Holstein ◽  
C.N. David

Differentiation of sensory nerve cells in tentacles of Hydra magnipapillata was investigated using the monoclonal antibody NV1. NV1+ sensory nerve cells form specific complexes with battery cells in tentacles. NV1+ cells can only be formed by differentiation from interstitial cell precursors. These precursors complete a terminal cell cycle in the distal gastric region at the base of tentacles; differentiation from the S/G2 boundary to expression of the NV1 antigen requires 30h. During this time, precursors move from the distal gastric region into the tentacles, differentiate to morphologically fully formed nerve cells and then begin expressing NV1 antigen. The neuropeptide head activator stimulates NV1+ differentiation in S-phase of the precursor's cell cycle.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


Sign in / Sign up

Export Citation Format

Share Document