Membrane lipid metabolism in Chlamydomonas reinhardtii 137+ and Y-1: I. Biochemical localization and characterization of acyltransferase activities

1982 ◽  
Vol 58 (1) ◽  
pp. 469-488
Author(s):  
C.L. Jelsema ◽  
A.S. Michaels ◽  
D.R. Janero ◽  
R.J. Barrnett

The acyltransferases involved in the synthesis of the chloroplast membrane glycerolipids were analysed biochemically in dark-grown and greening Chlamydomonas reinhardtii y-1 as well as in the synchronous wild-type algae (strain 137+) and wild-type membranes. Using oleoyl-CoA as a substrate, three acyltransferase enzyme activities were detected. Glycerol-3-phosphate (glycerol-3-P) acyltransferase exhibited a pH optimum of 8.0 and was inhibited by addition of N-ethylmaleimide (MalNEt). Lysophosphatidate (PtdLys) acyltransferase exhibited a pH optimum of 7.0 and was not affected by the addition of MalNEt. From preliminary analyses, the activity at pH 5.5 appeared to be associated with dihydroxyacetone phosphate acyltransferase activity. Both glycerol-3-P and PtdLys acyltransferases were analysed further and found to be present in dark-grown and light-induced y-1 cells as well as in synchronous 137+ cells and their photosynthetic membranes. Both enzyme activities were enriched at least 10-fold in the photosynthetic membranes of 137+ chloroplasts relative to the activities present in the whole cells. This enrichment is indicative of their intrinsic localization in the thylakoids, suggesting that the photosynthetic membranes exhibit a greater degree of autonomy with respect to the synthesis of their membrane lipids than previously reported. A role for glycerol-3-P and PtdLys acyltransferases in the synthesis of the chloroplast membrane lipids is suggested further by the increases in both enzyme activities coincident with and preceding thylakoid biogenesis following light induction of dark-grown y-1 cells. Increased acyltransferase activity preceded the increase in the chlorophyll content of greening y-1 cells, which is a generally accepted marker for thylakoid synthesis. The increase in the PtdLys acyltransferase activity upon light-induction of the y-1 cells was both more immediate and more dramatic than the increase in glycerol-3-P acyltransferase activity. PtdLys acyltransferase activity was negligible in dark-grown cells and the dramatic increase upon light induction may be important in the subsequent initiation of chloroplast membrane lipid synthesis. On the basis of the localization of acyltransferase enzyme activities to the photosynthetic membranes of 137+ cells and the increase in acyltransferase activity both preceding and occurring in concert with thylakoid synthesis, we propose a direct role for the photosynthetic membranes in the synthesis of their membrane lipid components.

2002 ◽  
Vol 46 (12) ◽  
pp. 3695-3705 ◽  
Author(s):  
Kasturi Mukhopadhyay ◽  
Avmeet Kohli ◽  
Rajendra Prasad

ABSTRACT In the present study we have exploited isogenic erg mutants of Saccharomyces cerevisiae to examine the contribution of an altered lipid environment on drug susceptibilities of yeast cells. It is observed that erg mutants, which possess high levels of membrane fluidity, were hypersensitive to the drugs tested, i.e., cycloheximide (CYH), o-phenanthroline, sulfomethuron methyl, 4-nitroquinoline oxide, and methotrexate. Most of the erg mutants except mutant erg4 were, however, resistant to fluconazole (FLC). By using the fluorophore rhodamine-6G and radiolabeled FLC to monitor the passive diffusion, it was observed that erg mutant cells elicited enhanced diffusion. The addition of a membrane fluidizer, benzyl alcohol (BA), to S. cerevisiae wild-type cells led to enhanced membrane fluidity. However, a 10 to 12% increase in BA-induced membrane fluidity did not alter the drug susceptibilities of the S. cerevisiae wild-type cells. The enhanced diffusion observed in erg mutants did not seem to be solely responsible for the observed hypersensitivity of erg mutants. In order to ascertain the functioning of drug extrusion pumps encoding the genes CDR1 (ATP-binding cassette family) and CaMDR1 (MFS family) of Candida albicans in a different lipid environment, they were independently expressed in an S. cerevisiae erg mutant background. While the fold change in drug resistance mediated by CaMDR1 remained the same or increased in erg mutants, susceptibility to FLC and CYH mediated by CDR1 was increased (decrease in fold resistance). Our results demonstrate that between the two drug extrusion pumps, Cdr1p appeared to be more adversely affected by the fluctuations in the membrane lipid environment (particularly to ergosterol). By using 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino-hexanoyl] sphingosyl phosphocholine (a fluorescent analogue of sphingomyelin), a close interaction between membrane ergosterol and sphingomyelin which appears to be disrupted in erg mutants is demonstrated. Taken together it appears that multidrug resistance in yeast is closely linked to the status of membrane lipids, wherein the overall drug susceptibility phenotype of a cell appears to be an interplay among drug diffusion, extrusion pumps, and the membrane lipid environment.


2014 ◽  
Vol 13 (3) ◽  
pp. 392-400 ◽  
Author(s):  
Matthew P. Davey ◽  
Irmtraud Horst ◽  
Giang-Huong Duong ◽  
Eleanor V. Tomsett ◽  
Alexander C. P. Litvinenko ◽  
...  

ABSTRACT To improve the economic viability of microalgal biodiesel, it will be essential to optimize the productivity of fuel molecules such as triacylglyceride (TAG) within the microalgal cell. To understand some of the triggers required for the metabolic switch to TAG production, we studied the effect of the carbon supply (acetate or CO 2 ) in Chlamydomonas reinhardtii (wild type and the starchless sta6 mutant) grown under low N availability. As expected, initial rates of TAG production were much higher when acetate was present than under strictly photosynthetic conditions, particularly for the sta6 mutant, which cannot allocate resources to starch. However, in both strains, TAG production plateaued after a few days in mixotrophic cultures, whereas under autotrophic conditions, TAG levels continued to rise. Moreover, the reduced growth of the sta6 mutant meant that the greatest productivity (measured as mg TAG liter −1 day −1 ) was found in the wild type growing autotrophically. Wild-type cells responded to low N by autophagy, as shown by degradation of polar (membrane) lipids and loss of photosynthetic pigments, and this was less in cells supplied with acetate. In contrast, little or no autophagy was observed in sta6 mutant cells, regardless of the carbon supply. Instead, very high levels of free fatty acids were observed in the sta6 mutant, suggesting considerable alteration in metabolism. These measurements show the importance of carbon supply and strain selection for lipid productivity. Our findings will be of use for industrial cultivation, where it will be preferable to use fast-growing wild-type strains supplied with gaseous CO 2 under autotrophic conditions rather than require an exogenous supply of organic carbon.


2004 ◽  
Vol 186 (6) ◽  
pp. 1667-1677 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Karel E. E. de Rudder ◽  
Otto Geiger

ABSTRACT In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.


2020 ◽  
Vol 61 (4) ◽  
pp. 851-862
Author(s):  
Miao Yang ◽  
Fantao Kong ◽  
Xi Xie ◽  
Peichun Wu ◽  
Yadong Chu ◽  
...  

Abstract The increasing demand for triacylglycerol (TAG) enriching polyunsaturated fatty acids (PUFAs) has led to a surge of interest in microalgal TAG metabolism. Polar membrane lipids serve as the desaturation carrier for PUFA, and the functional group of PUFA can be incorporated into TAG. Monogalactoglycerolipid has been found to provide the de novo synthesized oleate acyl group or the nascent polyunsaturated diacylglycerol backbone for TAG biosynthesis in the model green alga, Chlamydomonas reinhardtii. However, whether other membrane lipids take part in the formation of PUFA-attached TAG has not been clearly discovered. A time course study of glycerolipidomics in the starchless mutant of C. reinhardtii, BAFJ5, which hyper-accumulates TAG, revealed that digalactosyldiacylglycerol (DGDG) and diacylglycerol-N,N,N-trimethylhomoserine (DGTS) turned into the main components of membrane lipids, accounting for 62% of the total polar lipids, under nitrogen deprivation combined with high light conditions. In addition, the membrane lipid molecules DGDG 18:3n3/16:0 and DGTS 16:0/18:3n6 were presumed to be involved in the consecutive integration of the de novo synthesized linolenates into TAG. Based on the stoichiometry calculation, DGDG and DGTS were demonstrated to provide a major contribution to the accumulation of linolenate-attached TAG. Our study gives insights into the potential PUFA-attached TAG formation pathway mediated by the turnover of de novo synthesized DGDG and DGTS in the starchless mutant of Chlamydomonas.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Iwona Sadura ◽  
Dariusz Latowski ◽  
Jana Oklestkova ◽  
Damian Gruszka ◽  
Marek Chyc ◽  
...  

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


2021 ◽  
Vol 22 (4) ◽  
pp. 2174
Author(s):  
Liang Lin ◽  
Junchao Ma ◽  
Qin Ai ◽  
Hugh W. Pritchard ◽  
Weiqi Li ◽  
...  

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1345-1353
Author(s):  
Amber K Bowers ◽  
Jennifer A Keller ◽  
Susan K Dutcher

Abstract To take advantage of available expressed sequence tags and genomic sequence, we have developed 64 PCR-based molecular markers in Chlamydomonas reinhardtii that map to the 17 linkage groups. These markers will allow the rapid association of a candidate gene sequence with previously identified mutations. As proof of principle, we have identified the genes encoded by the ERY1 and ERY2 loci. Mendelian mutations that confer resistance to erythromycin define three unlinked nuclear loci in C. reinhardtii. Candidate genes ribosomal protein L4 (RPL4) and L22 (RPL22) are tightly linked to the ERY1 locus and ERY2 locus, respectively. Genomic DNA for RPL4 from wild type and five mutant ery1 alleles was amplified and sequenced and three different point mutations were found. Two different glycine residues (G102 and G112) are replaced by aspartic acid and both are in the unstructured region of RPL4 that lines the peptide exit tunnel of the chloroplast ribosome. The other two alleles change a splice site acceptor site. Genomic DNA for RPL22 from wild type and three mutant ery2 alleles was amplified and sequenced and revealed three different point mutations. Two alleles have premature stop codons and one allele changes a splice site acceptor site.


2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


Sign in / Sign up

Export Citation Format

Share Document