Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin

1986 ◽  
Vol 86 (1) ◽  
pp. 109-118
Author(s):  
N. Nakatsuji

During amphibian gastrulation, presumptive mesoderm cells migrate from the blastopore towards the animal pole along the inner surface of the ectodermal layer. Their natural substratum is a network of anastomosing extracellular matrix fibrils, which contains fibronectin and laminin, as shown by immunostaining. If the fibril network is transferred onto a coverslip from the ectodermal layer, dissociated mesodermal cells readily attach to such conditioned surfaces and show active migration in a medium of high pH and low calcium ion concentration. In the present study, the surface of tissue culture dishes was coated with fibronectin, laminin, collagen type IV or heparan sulphate, to examine the effects on cell attachment and movement. The presumptive mesoderm cells from Xenopus laevis gastrulae showed rapid adhesion and active movement on the fibronectin- or laminin-coated surfaces. Cell adhesion was stronger and the mean rate of movement was higher on the fibronectin-coated surface than on the laminin-coated surface. The dissociated ectodermal cells did not attach to the fibronectin- or laminin-coated surfaces. The mesodermal cells did not attach to the collagen-, or heparan sulphate-coated surfaces, showing that these components of the basement membrane cannot serve as an adequate substratum for the mesoderm cells, at least by themselves.

1990 ◽  
Vol 95 (2) ◽  
pp. 255-262
Author(s):  
W.D. Norris ◽  
J.G. Steele ◽  
G. Johnson ◽  
P.A. Underwood

The initial attachment and spreading of endothelial cells from human umbilical artery onto type I collagen, type IV collagen or gelatin substrata was shown to be enhanced by inclusion of serum in the culture medium. To test whether this serum effect was mediated by adsorption of serum fibronectin or vitronectin onto the collagen, these adhesive glycoproteins were selectively removed from the serum prior to addition to the culture medium. The stimulatory effect of serum on human endothelial cell spreading on collagens I and IV was also observed with serum from which either fibronectin or vitronectin, or both, had been selectively removed. The stimulatory effect for cell spreading on gelatin was diminished by selective removal of serum fibronectin, but unaffected by removal of vitronectin. Human endothelial cell attachment and spreading onto tissue culture plastic was abolished by removal of vitronectin from the serum in the culture medium. These results emphasize that the native structure of collagens is required for serum-enhancement of human endothelial cell attachment and spreading on native collagen types I and IV, and show that on these substrata the stimulated adhesion and spreading are not dependent upon adsorption of serum fibronectin or vitronectin onto the collagen substratum.


1999 ◽  
Vol 340 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Marc G. COPPOLINO ◽  
Shoukat DEDHAR

As transmembrane heterodimers, integrins bind to both extracellular ligands and intracellular proteins. We are currently investigating the interaction between integrins and the intracellular protein calreticulin. A prostatic carcinoma cell line (PC-3) was used to demonstrate that calreticulin can be found in the α3 immunoprecipitates of cells plated on collagen type IV, but not when plated on vitronectin. Conversely, αv immunoprecipitates contained calreticulin only when cells were plated on vitronectin, i.e. not when plated on collagen IV. The interactions between these integrins and calreticulin were independent of actin cytoskeleton assembly and were transient, being maximal approx. 10-30 min after the cells came into contact with the substrates prior to complete cell spreading and formation of firm adhesive contacts. We demonstrate that okadaic acid, an inhibitor of intracellular serine/threonine protein phosphatases, inhibited the α3β1-mediated adhesion of PC-3 cells to collagen IV and the α2β1-mediated attachment of Jurkat cells to collagen I. This inhibition by okadaic acid was accompanied by inhibition of the ligand-specific interaction of calreticulin with the respective integrins in the two cell types. Additionally, we found that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) resulted in prolongation of the calreticulin-integrin interaction, and enhancement of PC-3 cell attachment to collagen IV. We conclude that calreticulin interacts transiently with integrins during cell attachment and spreading. This interaction depends on receptor occupation, is ligand-specific, and can be modulated by protein phosphatase and MEK activity.


Development ◽  
2021 ◽  
Vol 148 (4) ◽  
pp. dev195511
Author(s):  
Véronique Van De Bor ◽  
Vincent Loreau ◽  
Marilyne Malbouyres ◽  
Delphine Cerezo ◽  
Audrey Placenti ◽  
...  

ABSTRACTBasement membranes (BM) are extracellular matrices assembled into complex and highly organized networks essential for organ morphogenesis and function. However, little is known about the tissue origin of BM components and their dynamics in vivo. Here, we unravel the assembly and role of the BM main component, Collagen type IV (ColIV), in Drosophila ovarian stalk morphogenesis. Stalks are short strings of cells assembled through cell intercalation that link adjacent follicles and maintain ovarian integrity. We show that stalk ColIV has multiple origins and is assembled following a regulated pattern leading to a unique BM organisation. Absence of ColIV leads to follicle fusion, as observed upon ablation of stalk cells. ColIV and integrins are both required to trigger cell intercalation and maintain mechanically strong cell-cell attachment within the stalk. These results show how the dynamic assembly of a mosaic BM controls complex tissue morphogenesis and integrity.


1987 ◽  
Vol 105 (1) ◽  
pp. 441-448 ◽  
Author(s):  
L B Grabel ◽  
T D Watts

Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm-like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.


2009 ◽  
Vol 614 ◽  
pp. 67-71 ◽  
Author(s):  
Yun Cang Li ◽  
Jian Yu Xiong ◽  
C.S. Wong ◽  
Peter D. Hodgson ◽  
Cui E Wen

In the present study, titanium (Ti) samples were surface-modified by titania (TiO2), silica (SiO2) and hydroxyapatite (HA) coatings using a sol-gel process. The bioactivity of the film-coated Ti samples was investigated by cell attachment and morphology study using human osteoblast-like SaOS-2 cells. Results of the cell attachment indicated that the densities of cell attachment on the surfaces of Ti samples were significantly increased by film coatings; the density of cell attachment on HA film-coated surface was higher than those on TiO2 and SiO2 film-coated surfaces. Cell morphology study showed that the cells attached, spread and grew well on the three kinds of film-coated surfaces. It can be concluded that the three kinds of film coatings can bioactivate the surfaces of Ti samples effectively. Overall, Ti sample with HA film-coated surface exhibited the best bioactivity.


Author(s):  
J.P Cassella ◽  
H. Shimizu ◽  
A. Ishida-Yamamoto ◽  
R.A.J. Eady

1nm colloidal gold with silver enhancement has been used in conjunction with a low-temperature post-embedding (post-E) technique for the demonstration of skin antigens at both the light microscopic (LM) and electron microscopic (EM) levels.Keratin filaments and basement membrane zone (BMZ) associated antigens in normal human skin (NHS) were immunolabelled using antibodies against keratin 14, 10, and 1, the carboxy-terminus and collagenous portion of type VII collagen, type IV collagen and bullous pemphigoid antigen (BP-Ag).Fresh samples of NHS were cryoprotected in 15% glycerol, cryofixed in propane at -190°C, subjected to freeze substitution in methanol at -80°C and embedded in Lowicryl K11M at -60°C. Polymerisation of the resin was initiated under UVR at - 60°C for 48 hours and continued at room temperature for a further 48 hours. Semith in sections were air dried onto slides coated with 3-aminopropyltriethoxysilane. The following immunolabelling protocol was adopted: Primary antibody was applied for 2 hours at 37°C or overnight at 4°C. Following washing in Dulbecco’s phosphate buffered saline (PBSA) a biotinylated secondary antibody was applied for 2 hours at 37°C. The sections were further washed in PBSA and 1nm gold avidin was applied. Sections were finally washed in PBSA and silver enhanced.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 900
Author(s):  
Krasimir Kostov ◽  
Alexander Blazhev

Thickening of the vascular basement membrane (BM) is a fundamental structural change in the small blood vessels in diabetes. Collagen type IV (CIV) is a major component of the BMs, and monitoring the turnover of this protein in type 2 diabetes (T2D) can provide important information about the mechanisms of vascular damage. The aim of the study was through the use of non-invasive biomarkers of CIV (autoantibodies, derivative peptides, and immune complexes) to investigate vascular turnover of CIV in patients with long-term complications of T2D. We measured serum levels of these biomarkers in 59 T2D patients with micro- and/or macrovascular complications and 20 healthy controls using an ELISA. Matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) were also tested. In the T2D group, significantly lower levels of CIV markers and significantly higher levels of MMP-2 and MMP-9 were found compared to controls. A significant positive correlation was found between IgM antibody levels against CIV and MMP-2. These findings suggest that vascular metabolism of CIV is decreased in T2D with long-term complications and show that a positive linear relationship exists between MMP-2 levels and CIV turnover in the vascular wall.


Sign in / Sign up

Export Citation Format

Share Document