scholarly journals Expression of nuclear lamins in mammalian somatic cells lacking cytoplasmic intermediate filament proteins

1989 ◽  
Vol 92 (3) ◽  
pp. 361-370 ◽  
Author(s):  
M. Paulin-Levasseur ◽  
A. Scherbarth ◽  
G. Giese ◽  
K. Roser ◽  
W. Bohn ◽  
...  

Using immunofluorescence and immunoblotting techniques, we have examined the composition of the nuclear lamina in murine plasmacytoma cells, MPC-11, exposed to the phorbol ester TPA as well as in two cell lines devoid of cytoplasmic intermediate filament proteins, the human adrenal cortex carcinoma-derived cells SW-13 and the clone C6-M-D4 derived from the rat glial cell line C6. Our results show that the inhibition of proliferation and the induction of vimentin synthesis observed in TPA-treated MPC-11 populations are not paralleled by changes in the lamin complement of these cells, which contain lamin B but lack lamins A and C. Furthermore, the analysis performed on SW-13 and C6-M-D4 cell lines clearly demonstrates that mammalian somatic cells display considerable variations in lamin expression and indicates that lamin B may be the only lamin species constitutively expressed in mammalian cells.

1998 ◽  
Vol 111 (23) ◽  
pp. 3471-3485 ◽  
Author(s):  
T.I. Mical ◽  
M.J. Monteiro

The mechanism by which human nuclear lamin B is targeted and assembled has been studied by transfecting into mammalian cells lamin mutants deleted of three sequences unique to lamins. Nuclear lamins contain an extra 42 amino acids (aa) in their rod domains and NLS and CAAX motifs in their tail domains, which distinguishes them from cytoplasmic IF proteins. These three sequences act in concert to ensure correct temporal and spatial assembly of lamin B. Deletion of any one of these three sequences from lamin B did not significantly disrupt nuclear lamina targeting, but when two or more of these sequences were deleted, targeting was severely compromised. The CAAX motif is necessary for the efficient integration of lamin B into an already formed nuclear lamina, since lamin B CAAX- mutants had reduced targeting to the lamina when arrested in S phase of the cell cycle. CAAX-deficient mutant lamin B proteins were soluble and not associated with membranes at mitosis, proving that the CAAX motif is responsible for association of human lamin B with membranes. In addition, CAAX- mutant lamin B proteins fractionated independently of the lamin B-receptor (LBR), indicating that these two proteins do not bind directly to each other.


1995 ◽  
Vol 108 (2) ◽  
pp. 635-644 ◽  
Author(s):  
P. Hozak ◽  
A.M. Sasseville ◽  
Y. Raymond ◽  
P.R. Cook

The nuclear lamina forms a protein mesh that underlies the nuclear membrane. In most mammalian cells it contains the intermediate filament proteins, lamins A, B and C. As their name indicates, lamins are generally thought to be confined to the nuclear periphery. We now show that they also form part of a diffuse skeleton that ramifies throughout the interior of the nucleus. Unlike their peripheral counterparts, these internal lamins are buried in dense chromatin and so are inaccessible to antibodies, but accessibility can be increased by removing chromatin. Knobs and nodes on an internal skeleton can then be immunolabelled using fluorescein- or gold-conjugated anti-lamin A antibodies. These results suggest that the lamins are misnamed as they are also found internally.


1990 ◽  
Vol 95 (4) ◽  
pp. 587-598
Author(s):  
R.A. Rober ◽  
H. Sauter ◽  
K. Weber ◽  
M. Osborn

Almost all somatic cells in adult murine tissues express all three nuclear lamins (A, B, C). Here we demonstrate that cells of the hemopoietic system of the adult mouse are an exception in that they express only lamin B. Thus T and B lymphocytes as well as granulocytes and monocytic cells directly isolated from spleen, thymus, blood or bone marrow do not express lamin A/C but only lamin B. In agreement with this observation the murine hemopoietic cell lines EL4, BW5147, HK22, 70Z/3, SP2/0 and PAI express only lamin B. In immunoblotting experiments used to confirm the immunofluorescence data no lamin A/C expression was detected. However, we noticed that murine lamin B occurs in two isoforms, which can be distinguished immunologically. These results reinforce the idea that a functional nuclear lamina can be formed from lamin B alone. They also pose the question of whether cells lacking lamin A/C are more plastic in their developmental programs than those that express all three lamins.


1983 ◽  
Vol 96 (1) ◽  
pp. 37-50 ◽  
Author(s):  
E Schmid ◽  
DL Schiller ◽  
C Grund ◽  
J Stadler ◽  
WW Franke

Different clonal cell lines have been isolated from cultures of mammary gland epithelium of lactating cow's udder and have been grown in culture media containing high concentrations of hydrocortisone, insulin, and prolactin. These cell (BMGE+H), which grow in monolayers of typical epithelial appearance, are not tightly packed, but leave intercellular spaces spanned by desmosomal bridges. The cells contain extended arrays of cytokeratin fibrils, arranged in bundles attached to desmosomes. Gel electophoresis show that they synthesize cytokeratins similar, if not identical, to those found in bovine epidermis and udder, including two large (mol wt 58,500 and 59,000) and basic (pH range: 7-8) and two small (mol wt 45,500 and 50,000) and acidic (pH 5.32 and 5.36) components that also occur in phosphorylated forms. Two further cytokeratins of mol wts 44,000 (approximately pH 5.7) and 53,000 (pH 6.3) are detected as minor cytokeratins in some cell clones. BMGE+H cells do not produce vimentin filaments as determined by immunofluorescence microscopy and gel electrophoresis. By contrast, BMGE-H cells, which have emerged from the same original culture but have been grown without hormones added, are not only morphologically different, but also contain vimentin filaments and a different set of cytokeratins, the most striking difference being the absence of the two acidic cytokeratins of mol wt 50,000 and 45,500. Cells of the BMGE+H line are characterized by an unusual epithelial morphology and represent the first example of a nonmalignant permanent cell line in vitro that produces cytokeratin but not vimentin filaments. The results show that (a) tissue-specific patterns of intermediate filament expression can be maintained in permanent epithelial cell lines in culture, at least under certain growth conditions; (b) loss of expression of relatively large, basic cytokeratins is not an inevitable consequence of growth of epithelial cells in vitro. Our results further show that, during culturing, different cell clones with different cytoskeletal composition can emerge from the same cell population and suggest that the presence of certain hormones may have an influence on the expression of intermediate filament proteins.


2001 ◽  
Vol 114 (6) ◽  
pp. 1079-1089 ◽  
Author(s):  
S.C. Schweitzer ◽  
M.W. Klymkowsky ◽  
R.M. Bellin ◽  
R.M. Robson ◽  
Y. Capetanaki ◽  
...  

De novo expression of vimentin, GFAP or peripherin leads to the assembly of an extended intermediate filament network in intermediate filament-free SW13/cl.2 cells. Desmin, in contrast, does not form extended filament networks in either SW13/cl.2 or intermediate filament-free mouse fibroblasts. Rather, desmin formed short thickened filamentous structures and prominent spot-like cytoplasmic aggregates that were composed of densely packed 9–11 nm diameter filaments. Analysis of stably transfected cell lines indicates that the inability of desmin to form extended networks is not due to a difference in the level of transgene expression. Nestin, paranemin and synemin are large intermediate filament proteins that coassemble with desmin in muscle cells. Although each of these large intermediate filament proteins colocalized with desmin when coexpressed in SW-13 cells, expression of paranemin, but not synemin or nestin, led to the formation of an extended desmin network. A similar rescue of desmin network organization was observed when desmin was coexpressed with vimentin, which coassembles with desmin, or with keratins, which formed a distinct filament network. These studies demonstrate that desmin filaments differ in their organizational properties from the other vimentin-like intermediate filament proteins and appear to depend upon coassembly with paranemin, at least when they are expressed in non-muscle cells, in order to form an extended filament network.


1993 ◽  
Vol 104 (4) ◽  
pp. 1263-1272 ◽  
Author(s):  
C.A. Bossie ◽  
M.M. Sanders

A novel intermediate filament cDNA, pG-IF, has been isolated from a Drosophila melanogaster embryonic expression library screened with a polyclonal antiserum produced against a 46 kDa cytoskeletal protein isolated from Kc cells. This 46 kDa protein is known to be immunologically related to vertebrate intermediate filament proteins. The screen resulted in the isolation of four different cDNA groups. Of these, one has been identified as the previously characterized Drosophila nuclear lamin cDNA, Dm0, and a second, pG-IF, demonstrates homology to Dm0 by cross hybridization on Southern blots. DNA sequence analysis reveals that pG-IF encodes a newly identified intermediate filament protein in Drosophila. Its nucleotide sequence is highly homologous to nuclear lamins with lower homology to cytoplasmic intermediate filament proteins. pG-IF predicts a protein of 621 amino acids with a predicted molecular mass of 69,855 daltons. In vitro transcription and translation of pG-IF yielded a protein with a SDS-PAGE estimated molecular weight of approximately 70 kDa. It contains sequence principles characteristic of class V intermediate filament proteins. Its near neutral pI (6.83) and the lack of a terminal CaaX motif suggests that it may represent a lamin C subtype in Drosophila. In situ hybridization to polytene chromosomes detects one band of hybridization on the right arm of chromosome 2 at or near 51A. This in conjunction with Southern blot analysis of various genomic digests suggests one or more closely placed genes while Northern blot analysis detects two messages in Kc cells.


1992 ◽  
Vol 116 (6) ◽  
pp. 1303-1317 ◽  
Author(s):  
C H Yang ◽  
E J Lambie ◽  
M Snyder

A bank of 892 autoimmune sera was screened by indirect immunofluorescence on mammalian cells. Six sera were identified that recognize an antigen(s) with a cell cycle-dependent localization pattern. In interphase cells, the antibodies stained the nucleus and in mitotic cells the spindle apparatus was recognized. Immunological criteria indicate that the antigen recognized by at least one of these sera corresponds to a previously identified protein called the nuclear mitotic apparatus protein (NuMA). A cDNA which partially encodes NuMA was cloned from a lambda gt11 human placental cDNA expression library, and overlapping cDNA clones that encode the entire gene were isolated. DNA sequence analysis of the clones has identified a long open reading frame capable of encoding a protein of 238 kD. Analysis of the predicted protein sequence suggests that NuMA contains an unusually large central alpha-helical domain of 1,485 amino acids flanked by nonhelical terminal domains. The central domain is similar to coiled-coil regions in structural proteins such as myosin heavy chains, cytokeratins, and nuclear lamins which are capable of forming filaments. Double immunofluorescence experiments performed with anti-NuMA and antilamin antibodies indicate that NuMA dissociates from condensing chromosomes during early prophase, before the complete disintegration of the nuclear lamina. As mitosis progresses, NuMA reassociates with telophase chromosomes very early during nuclear reformation, before substantial accumulation of lamins on chromosomal surfaces is evident. These results indicate that the NuMA proteins may be a structural component of the nucleus and may be involved in the early steps of nuclear reformation during telophase.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1923-1923 ◽  
Author(s):  
Ze Tian ◽  
Padraig D'Arcy ◽  
Xin Wang ◽  
Arghya Ray ◽  
Yu-Tzu Tai ◽  
...  

Abstract Introduction Proteasome inhibitors have demonstrated that targeting ubiquitin proteasome pathway (UPS) is an effective therapy in multiple myeloma (MM). More recent studies have focused on targeting enzymes modulating protein ubiquitin conjugation/deconjugation upstream of the proteasome rather than the proteasome itself, with the goal of producing more specific, potent, and less toxic therapies targeting UPS. Ubiquitylation is a dynamic reversible process coordinated by many enzymes: ubiquitin ligases attach ubiquitin to proteins allowing for their degradation, whereas deubiquitylating enzymes (DUBs) deconjugate ubiquitin from target proteins, thereby preventing their proteasome-mediated degradation. Importantly, many human diseases are linked to dysfunction of ubiquitin ligases and/or DUBs, suggesting that inhibitors of ubiquitylating or DUBs represent a potential therapeutic strategy.In mammalian cells, three DUBs are associated with the proteasome: USP14, UCHL5/Uch37, and Rpn11. In the present study, we examined the expression of USP14 and UCHL5 in MM by western blot and Immunohistochemistry (IHC). Results Our results show that DUBs USP14 and UCHL5 are more highly expressed in primary MM patient tumor cells and MM cell lines than in normal plasma cells and peripheral blood mononuclear cells (PBMCs). Additionally, USP14 and UCHL5 siRNA knockdown significantly decrease MM cell viability (p < 0.001) in a CellTiter Glo assay. A novel 19S regulatory particle inhibitor b-AP15 selectively blocks deubiquitylating activity of USP14 and UCHL5 without inhibiting activity of other DUBs, proteases and proteasome; Importantly, b-AP15 decreases cell viability in MM cell lines as well as patient MM cells, without markedly affecting PBMCs from normal healthy donors. Moreover, b-AP15 inhibits proliferation of MM cells even in the presence of bone marrow stroma cells and overcomes bortezomib-resistance. Mechanistic studies show that b-AP15 triggers MM cell arrest via downregulation of CDC25C, CDC2 and cyclinB1, followed by caspase-dependent apoptosis through activation of intrinsic and extrinsic apoptotic pathways. b-AP15, like bortezomib, induces ER stress evidenced by the upregulation of ER stress-related proteins p-IRE-alpha, and p-eIF2. In vivo studies using subcutaneous and disseminated human MM xenograft models show that b-AP15 is well tolerated, inhibits tumor growth, and prolongs survival (p < 0.001). In concert with our in vitro study, IHC analysis of tumor tissues showed inhibition of proliferation, induction of apoptosis, and accumulation of ubiquitinated proteins, assessed by staining with ki67, caspase-3, and UB-k48 antibodies, respectively. Finally, combining b-AP15 with SAHA, lenalidomide, or dexamethasone induces synergistic anti-MM activity. Conclusion Our preclinical data showing efficacy of b-AP15 in MM disease models validates targeting DUBs upstream of the proteasome in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance, and provides the framework for clinical evaluation of USP14/UCHL5 inhibitors to improve patient outcome in MM. Disclosures: Tai: Onyx: Consultancy. Richardson:Celgen, Inc., Millenium: Membership on an entity’s Board of Directors or advisory committees. Chauhan:Vivolux: Consultancy. Anderson:Oncoprep: Scientific founder:, Scientific founder: Other; Acetylon: Scientific founder, Scientific founder Other; Sonofi Aventis: Advisory board, Advisory board Other; Gilead: Advisory board, Advisory board Other; Onyx: Advisory board, Advisory board Other; Celgene : Membership on an entity’s Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document