In vitro study of placental trophoblast calcium uptake using JEG-3 human choriocarcinoma cells

1991 ◽  
Vol 98 (3) ◽  
pp. 333-342
Author(s):  
R.S. Tuan ◽  
C.J. Moore ◽  
J.W. Brittingham ◽  
J.J. Kirwin ◽  
R.E. Akins ◽  
...  

During human fetal development, placental syncytiotrophoblasts actively transport calcium from the maternal to the fetal circulation. Two functional components, a cytosolic Ca2(+)-binding protein (CaBP) and a Ca2(+)-ATPase have been identified in the syncytiotrophoblasts of the chorionic villi. We report here the calcium uptake properties of a human choriocarcinoma cell line, JEG-3, which was used as an in vitro model cell system for the syncytiotrophoblasts. In culture, JEG-3 proliferated as large syncytial aggregates expressing typical syncytiotrophoblast markers. 45Ca uptake by JEG-3 was a substrate- and temperature-dependent, membrane-mediated active process that exhibited linear kinetics for up to 7 min. Both the CaBP and the Ca2(+)-ATPase were expressed by JEG-3, on the basis of biochemical, histochemical, immunochemical and or mRNA assays. Immunohistochemistry and in situ hybridization revealed that JEG-3 cells were heterogeneous with respect to the expression of the CaBP. The Ca2(+)-ATPase activity of JEG-3 was similar to the placental enzyme in terms of sensitivity to specific inhibitors, and was detected histochemically along the cell membrane. Fura-2 Ca2+ imaging revealed that calcium uptake by JEG-3 was not accompanied by a concomitant increase in cytosolic [Ca2+], suggesting a specific Ca2+ sequestration mechanism. The involvement of calciotropic hormonal regulation was evaluated by studying the response of JEG-3 to 1,25-dihydroxy vitamin D3. Calcium uptake was significantly stimulated in a dose-dependent manner by a 24-h treatment of the cells with 1,25-dihydroxy vitamin D3 (optimal dose approximately 0.5 nM); the CaBP level doubled whereas steady-state CaBP mRNA did not, suggesting that CaBP expression was regulated by 1,25-dihydroxy vitamin D3. These observations strongly suggest that the JEG-3 human choriocarcinoma cells should serve as a convenient in vitro model system for studying the cellular mechanism and regulation of transplacental calcium transport.

2015 ◽  
Vol 27 (1) ◽  
pp. 199
Author(s):  
J.-H. Lee ◽  
E.-B. Jeung

The placenta exchanges vital factors, including oxygen, carbon dioxide, copper, iron, calcium cations, and glucose, which are essential to fetal growth. Each molecule is transferred by specific receptors that are located at the cell membrane or in the cytoplasm. Copper, iron, calcium cations, and glucose transfer genes are regulated by estrogens, vitamin D, and human placental lactogen. Regulations of these receptors depend on pregnancy time length and maternal and fetal nutrient environment with various pathways. Some synthetic plastics known as endocrine disrupting chemicals (EDC) have a similar structure to reproductive hormones such as estrogens. Thus, these substances have a potential effect on the expression of genes which are regulated by estrogens or progesterone by interfering their pathways. Having an estrogenic property, EDC interact with oestrogen receptors and elevate or decrease the expression of target genes which are responsible for transporting essential molecules such as copper, iron, and calcium. To examine the effects of EDC exposure during pregnancy, we conducted an in vitro model study using the BeWo human trophoblast cell line. The BeWo cell was treated with well-known EDC, octyl-phenol (OP), nonyl-phenol (NP), and bisphenol A (BPA) in a dose-dependent manner (10–7, 10–6, and 10–5 M) for 24 h. The expression of copper (CTR1, ATP7A), iron (IREG1, HEPH), and calcium transporting genes (PMCA1, TRPV6), were measured by real-time RT–PCR and Western blot. The expression of copper, iron, and calcium transporting genes were elevated in a dose-dependent manner by all well-known EDC, including OP, NP, and BPA, as well as E2. To unveil the mechanism of these elevations of ionic transporting genes, an ERE promoter study will be needed. Taken together, essential cation transporting genes in placenta are modulated by EDC.


1991 ◽  
Vol 260 (2) ◽  
pp. G207-G212 ◽  
Author(s):  
A. R. Giuliano ◽  
R. J. Wood

The human colon adenocarcinoma cell line Caco-2 is the only intestinal cell line to differentiate spontaneously in culture exhibiting structural and biochemical characteristics of mature enterocytes and to possess a vitamin D receptor in the fully differentiated state. Transepithelial calcium transport was characterized in differentiated Caco-2 cells grown on permeable filters supports to assess the potential utility of this cell line as an in vitro model to study 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-induced calcium transport. Calcium transport was increased in a dose-dependent manner by 1,25(OH)2D3. Total calcium transport at different calcium concentrations could be fitted to a modified Michaelis-Menten equation containing a linear transport component. The maximum rate of saturable calcium transport was increased by 4.3-fold (P less than 0.005) in cells treated with 10(-8) M 1,25(OH)2D3. This treatment also increased the apparent buffer calcium concentration that results in half-maximal velocity from 0.4 to 1.3 mM but had no significant effect on nonsaturable calcium transport. Caco-2 cells grown on permeable filter supports provide a unique in vitro human cell culture model to study the mechanism of vitamin D-regulated transepithelial intestinal calcium transport.


Author(s):  
Yamini N ◽  
Lahari S ◽  
Phani deepthi V

Using an in vitro model, the anti-thrombolytic efficacy of ethanolic extracts of Ocimum kilimandscharicum Linn was investigated. The researchers discovered that different concentrations of the extract had significant anti-thrombolytic activity in a dose-dependent manner , which was comparable to a standard drug. As a result of the presence of flavonoids and polyphenols in the plant extract, it can be concluded that it has a promising future in the treatment of thrombosis. This knowledge will be useful in the clinical development of thrombolytic therapeutics by identifying more potent anti-thrombolytic principles from natural resources..    


1997 ◽  
Vol 110 (7) ◽  
pp. 861-870 ◽  
Author(s):  
D. Greiling ◽  
R.A. Clark

After injury, the wound space is filled with a fibrin/fibronectin clot containing growth factors released by platelets and monocytes. In response to these factors, fibroblasts migrate into the fibrin clot and contribute to the formation of granulation tissue. The functional mechanisms allowing fibroblasts to leave the collagenous matrix of normal connective tissue and invade the provisional matrix of the fibrin clot have not been fully defined. To investigate these mechanisms we established a new in vitro model which simulates specific aspects of early wound healing, that is, the migration of fibroblasts from a three-dimensional collagen matrix into a fibrin clot. This transmigration could be induced by physiological concentrations of platelet releasate or platelet-derived growth factor BB (PDGF-BB) in a concentration-dependent manner. At 24 hours irradiated fibroblasts invaded the fibrin gel almost as well as non-irradiated cells, indicating that transmigration was independent of proliferation. Plasminogen and its activators appear to be necessary for invasion of the fibrin clot since protease inhibitors decreased the amount of migration. These serine proteases, however, were not necessary for exit from the collagen gel as fibroblasts migrated out of the collagen gel onto a surface coated with fibrin fibrils even in the presence of inhibitors. Removal of fibronectin (FN) from either the collagen gel or the fibrin gel markedly decreased the number of migrating cells, suggesting that FN provides a conduit for transmigration. Cell movement in the in vitro model was inhibited by RGD peptide, and by monoclonal antibodies against the subunits of the alpha5 beta1 and alpha v beta3 integrin receptor. Thus, the functional requirements for fibroblast transmigration from collagen-rich to fibrin-rich matrices, such as occurs in early wound healing, have been partially defined using an in vitro paradigm of this important biologic process.


1999 ◽  
Vol 97 (3) ◽  
pp. 385-390 ◽  
Author(s):  
Andrew J. WILSON ◽  
Keith BYRON ◽  
Peter R. GIBSON

The migration of colonic epithelial cells (restitution) is an important event in the repair of mucosal injuries. Interleukin-8 (IL-8) is a physiological initiator of the chemotactic migration of leucocytes. This study aimed to determine whether IL-8 had a similar effect on migration in an in vitro model of wounded colonic epithelium. Cell migration over 24 h was assessed in circular wounds made in confluent monolayers of the human colon cancer cell line LIM1215. This migration was stimulated in a concentration-dependent manner by IL-8, with maximal effects of approx. 1.75-fold above basal migration. The motogenic effect of IL-8 was mediated independently of effects on cell proliferation. In contrast, it was partially dependent upon gene transcription and protein synthesis and involved the activation of pertussis-toxin-sensitive G-proteins. The short-chain fatty acids, acetate, propionate, butyrate and valerate, the activator of protein kinase C (phorbol-12-myristate-13-acetate) and tumour necrosis factor-α (TNF-α) all stimulated the secretion of IL-8. However, only the motogenic effect of TNF-α was dependent upon IL-8. In conclusion, IL-8 stimulated cell migration in an in vitro model of colonic epithelium, whereas the motogenic effect of at least one physiologically relevant factor was dependent upon an increase in its endogenous levels. If IL-8 stimulates colonic epithelial restitution in vivo, this would have ramifications for the control of repair processes following wounding of the colonic mucosa.


1997 ◽  
Vol 272 (1) ◽  
pp. G106-G115 ◽  
Author(s):  
F. G. Que ◽  
G. J. Gores ◽  
N. F. LaRusso

Although histological data suggest that cholangiocytes die by apoptosis in human liver diseases, no information exists on the mechanisms of cholangiocyte apoptosis. Thus our aims were to establish an in vitro model of cholangiocyte apoptosis and to test the hypothesis that changes in intracellular ions would cause apoptosis in cholangiocytes by a protease-sensitive pathway. A large number of proapoptotic agents were ineffective in inducing apoptosis in rat or human cholangiocytes in culture; in contrast, beauvericin, a K+ ionophore, caused apoptosis in both cell lines, despite their expression of Bcl-2. Although beauvericin decreased intracellular K+ and increased intracellular Ca2+, abolishing the K+ gradient did not prevent beauvericin-induced apoptosis; in contrast, omission of extracellular Ca2+ inhibited apoptosis by 42%. The interleukin-1 beta-converting enzyme (ICE) family protease inhibitor, Z-Val-Ala-Asp chloromethylketone, inhibited apoptosis in a concentration-dependent manner. By Northern blot analysis, cholangiocytes expressed the mRNA for three members of the ICE protease family: ICE, ICE/ CED-3 homologue-1 (ICH-1), and cysteine protease P-32 (CPP-32). Cleavage of a substrate for CPP-32-like protease activity, but not a substrate for ICE and ICH-1, increased after beauvericin treatment. In summary, we have established an in vitro model of apoptosis in cholangiocytes. Our data suggest that beauvericin-induced apoptosis occurs by a Ca(2+)-dependent CPP-32 protease-sensitive pathway despite cholangiocyte expression of Bcl-2.


2008 ◽  
Vol 93 (2) ◽  
pp. 88-93 ◽  
Author(s):  
William J. Olds ◽  
Alex R. McKinley ◽  
Michael R. Moore ◽  
Michael G. Kimlin

Sign in / Sign up

Export Citation Format

Share Document