Experiments with P32 and I131 on Species of Helix, Arion, and Agriolimax

1952 ◽  
Vol s3-93 (22) ◽  
pp. 133-146
Author(s):  
VERA FRETTER

If Helix aspersa, H. pomatia, Arion hortensis, and Agriolimax agrestis be fed on a diet which contains P32, autoradiographs show that the isotope is taken up by the digestive and lime cells of the digestive gland. From the formermost of it passes to the haemocoel, though some is retained for immediate metabolic activities; in the lime cells it is stored in calcium spherules. A very small amount of the tracer enters the body through the wall of the oesophagus, and more through the intestine, this site of diffusion being most pronounced directly after hibernation. The P33 in the haemocoel is dispersed to all tissues: all of them take up a little; in some it becomes concentrated. Concentrations appear in the nerve ring, the mucous and salivary glands, the odontophore and certain cells of the mantle. In the nervous system deposits are heavy around the fibres and slight in the cytoplasm of the cells; they indicate a compound, soluble in alcohol, which may be phospholipine, associated with medullated nerves. The phosphorus in mucous cells, most pronounced in the pedal and salivary glands, may be combined with the calcium which stabilizes mucus and prevents its rapid dispersal. The incorporation of isotope into the developing tooth of the radula indicates the relative activity of the basoblasts and cuspidoblasts: in early development of a tooth the basoblast secretes more actively, but as it becomes effete secretion by the cuspidoblast is accelerated. When the tooth is liberated from the latter there is no further addition to its substance. Phosphorus deposits in the mantle are in the calcium cells which secrete the shell. Here, as in the lime cells, and around certain blood-vessels, excess may be stored as calcium phosphate; reserves in the digestive gland are the largest. Amoebocytes concerned with the regeneration of the shell of Helix pomatia and H. aspersa carry the tracer element, and some of it is deposited in the shell. Also in the slug the tracer is transported by amoebocytes. Radioactive iodine in the lumen of the gut is taken up most readily by digestive cells; some enters the lime cells. Only in sparing quantities does this isotope pass from the gland to the rest of the body, and this entry is presumably associated with ionic exchange. It is not accumulated in any cell, except in the kidney whence it is excreted; it leaves the digestive cells to pass from the body with the faeces.

Author(s):  
M. P. Horvat ◽  
R. S. Dankovych

The aim of this work was to study the structure of lung and hepatopancreas of Roman snail (Helix of pomatia of L., 1758). The study found that the lung occupies the lower turn of shell and presented by a saccate cavity, in the wall of that there are a kidney and heart with a pericardium, and also a rectum and ureter pass. An external surface of lungs covered by a shell and covered by an epidermis. An internal surface is covered by a flat ciliated epithelium and forms numerous folds in which pulmonary vessels and lacunae are accommodated. The branches of pulmonary vein have a thick muscular wall, that consists of circular and longitudinal muscular layers. An internal surface of lungs covered by the layer of mucus. Inhalation and exhalation are carried out due to reduction and relaxation of muscles of dorsal wall of the body that is named a “diaphragm”. Gas exchange occurs through the hemolymphatic capillaries of the lung wall. Respiratory motions take place not rhythmically, but through the different intervals of time depending on a requirement in oxygen. The frequency of pneumostome closing and opening is typically one time in a minute. At subzero humidity of atmospheric air of pneumostome closed by a mantle, and also one (or a few) epiphragms. The hepatopancreas (“liver” or liver gland) is in the upper rotation of the sink and formed by two parts: right and left, from which two liver ducts enter into the stomach respectively. The liver gland consists of many acinuss, surrounded by connecting tissue, that contains small number of muscular fibres. Calcium cells have a pyramidal form and usually do not reach the lumen of the acinus. Cytoplasm of calcium cells contains inclusions: grains of phosphoricacid lime and drops of fat. The digestive cells of the hepatopencreas are more elongated, often clavicular. Сytoplasm of digestive cells is loose and vacuolated and contain inclusions of yellow-green color. Enzyme cells on histopreparations are difficult to distinguish from digestive ones. They contain transparent vacuoles with a large round inclusion of yellow-green color, which consists of a cluster of several grains of different sizes. Hepatopancreas performs the following functions: secretory (enzyme cells), absorption and intracellular digestion (digestive cells), preservation of nutrients and calcium (calcium cells), and also excretory function.


1998 ◽  
Vol 201 (3) ◽  
pp. 425-438 ◽  
Author(s):  
L Coelho ◽  
J Prince ◽  
T G Nolen

The marine snail Aplysia californica obtains its purple defensive ink exclusively from the accessory photosynthetic pigment r-phycoerythrin, which is found in the red seaweeds of its diet. The rhodoplast digestive cell, one of three types of cell lining the tubules of the digestive gland, appears to be the site of catabolism of red algal chloroplasts (rhodoplasts) since thylakoid membranes, including phycobilisome-sized membrane-associated particles, were found within the large digestive vacuoles of this cell. Immunogold localization showed that there was a statistically significant occurrence of the red algal phycobilisome pigment r-phycoerythrin within these rhodoplast digestive vacuoles, but not in other compartments of this cell type (endoplasmic reticulum, mitochondria, nucleus) or in other tissues (abdominal ganglion). Immunogold analysis also suggested that the rhodoplast vacuole is the site for additional modification of r-phycoerythrin, which makes it non-antigenic: the chromophore is either cleaved from its biliprotein or the biliprotein is otherwise modified. The hemolymph had spectrographic absorption maxima typical of the protein-free chromophore (phycoerythrobilin) and/or r-phycoerythrin, but only when the animal had been feeding on red algae. Rhodoplast digestive cells and their vacuoles were not induced by the type of food in the diet: snails fed green seaweed and animals fed lettuce had characteristic rhodoplast cells but without the large membranous inclusions (rhodoplasts) or phycobilisome-like granules found in animals fed red seaweed. Two additional cell types lining the tubules of the digestive gland were characterized ultrastructurally: (1) a club-shaped digestive cell filled with electron-dense material, and (2) a triangular 'secretory' cell devoid of storage material and calcium carbonate. The following model is consistent with our observations: red algal rhodoplasts are freed from algal cells in the foregut and then engulfed by rhodoplast digestive cells in the tubules of the digestive diverticula, where they are digested in membrane-bound vacuoles; r-phycoerythrin is released from phycobilisomes on the rhodoplast thylakoids and chemically modified before leaving the digestive vacuole and accumulating in the hemolymph; the pigment then circulates throughout the body and is concentrated in specialized cells and vesicles of the ink gland, where it is stored until secreted in response to certain predators.


Author(s):  
Vera Fretter

If Arion hortensis be fed on a diet which contains 90Sr, autoradiographs show that the isotope istaken up by the digestive and lime cells of the digestive gland. From the former it passes to th haemocoel; in the lime cells it is concentrated around the calcium spherules. Some of the tracer enters the body through the wall of the intestine. Calcium stores which surround blood vessels and calcium cells in the mantle also concentrate the tracer.In Aplysia.punctata 90Sr from the surrounding water passes through the surface of the body, and especially the gill; in Acanthodoris pilosa ions which enter the tissues from the sea water accumulate around the numerous calcium concretions in the mantle. These marine molluscs obtain cations directly from the water as well as by way of the food.There is a slow uptake of strontium ions by the ctenidia of Mytilus edulis, though, even in filtered sea water, the gut is the more important area for their ingress to the body. It is possible that they enter with the mucous feedingsheets. They pass readily into the cells of the digestive gland. Some of the isotope taken in with the food is absorbed by the wall of the intestine; this also occurs in Patella vulgata, in which the intestine provides a much larger area, and in Lepidochitona cinereus.Mytilus placed in filtered sea water which is activated with 90Sr, so increasing the strontium content by 007%, show the tracer localized for excretion within 10 hr. Ions are aggregated in the pericardial glands, not in the kidney.


1965 ◽  
Vol s3-106 (74) ◽  
pp. 173-192
Author(s):  
A. T. SUMNER

The digestive gland tubule epithelium of Helix aspersa is made up of 4 cell-types: thin cells, digestive cells, calcium cells, and excretory cells. Thin cells are narrow and undifferentiated. They divide by mitosis and are believed to develop into other celltypes. Digestive cells are highly vacuolated phagocytic and absorptive cells. Food materials are taken in by phagocytosis and are concentrated and digested in the vacuoles in the cell. When digestion is complete, the residual indigestible material in the vacuoles, and excretory material in the form of small granules of lipofuscin, are cast out of the cell surrounded by a portion of cytoplasm. Calcium cells are secretory, with a prominent Golgi apparatus and a high concentration of RNA in the cytoplasm. Most of the cell is occupied by spherules which contain calcium; apically there are protein granules which contain a high concentration of tryptophane. Both these types of inclusion are extruded from the cell. Protein granules may be zymogen granules, but the function of the calcium spherules is not known. Excretory cells are degenerate, and probably derived from calcium cells. They consist chiefly of a large vacuole, surrounded by a little cytoplasm. The vacuole contains one or more granules of lipofuscin. Similar granules can be found in the faeces, and thus they are excretory material.


Author(s):  
Oksana Rybachok

«Man is what he eats,» these words belong to the great Pythagoras. He meant by these words the connection of the origin of consumed food with the spiritual development of man. In fact, a lot depends on the nature of nutrition, the quality of food and, of course, on the degree of its perception by the body. Digestion process begins not in the stomach, but directly in the oral cavity as a result of mechanical processing of products with teeth and under the influence of the secretion of the salivary glands. That is why healthy teeth are the key to the normal functioning of the whole organism — people should start taking care of their teeth from the early childhood and dentists, who are far from being beloved by everybody and are often carelessly evaded, are called upon to help keep the teeth healthy.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 276
Author(s):  
Mariaelena D’Ambrosio ◽  
Cátia Gonçalves ◽  
Mariana Calmão ◽  
Maria Rodrigues ◽  
Pedro M. Costa

Marine biodiversity has been yielding promising novel bioproducts from venomous animals. Despite the auspices of conotoxins, which originated the paradigmatic painkiller Prialt, the biotechnological potential of gastropod venoms remains to be explored. Marine bioprospecting is expanding towards temperate species like the dogwhelk Nucella lapillus, which is suspected to secrete immobilizing agents through its salivary glands with a relaxing effect on the musculature of its preferential prey, Mytilus sp. This work focused on detecting, localizing, and testing the bioreactivity of cysteine-rich proteins and peptides, whose presence is a signature of animal venoms and poisons. The highest content of thiols was found in crude protein extracts from the digestive gland, which is associated with digestion, followed by the peribuccal mass, where the salivary glands are located. Conversely, the foot and siphon (which the gastropod uses for feeding) are not the main organs involved in toxin secretion. Ex vivo bioassays with Mytilus gill tissue disclosed the differential bioreactivity of crude protein extracts. Secretions from the digestive gland and peribuccal mass caused the most significant molecular damage, with evidence for the induction of apoptosis. These early findings indicate that salivary glands are a promising target for the extraction and characterization of bioactive cysteine-rich proteinaceous toxins from the species.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeffrey S. Prince ◽  
Paul Micah Johnson

The ultrastructure of the digestive gland of several sea hare species that produce different colored ink (Aplysia californicaproduces purple ink,A. julianawhite ink,A. parvulaboth white and purple ink, whileDolabrifera dolabriferaproduces no ink at all) was compared to determine the digestive gland’s role in the diet-derived ink production process. Rhodoplast digestive cells and their digestive vacuoles, the site of digestion of red algal chloroplast (i.e., rhodoplast) inA. californica, were present and had a similar ultrastructure in all four species. Rhodoplast digestive cell vacuoles either contained a whole rhodoplast or fragments of one or were empty. These results suggest that the inability to produce colored ink in some sea hare species is not due to either an absence of appropriate digestive machinery, that is, rhodoplast digestive cells, or an apparent failure of rhodoplast digestive cells to function. These results also propose that the digestive gland structure described herein occurred early in sea hare evolution, at least in the common ancestor to the generaAplysiaandDolabrifera. Our data, however, do not support the hypothesis that the loss of purple inking is a synapomorphy of the white-ink-producing subgenusAplysia.


1927 ◽  
Vol 5 (1) ◽  
pp. 66-88
Author(s):  
J. ARMITAGE ROBERTSON

The galvanotropic reactions of Polycelis nigra were investigated in constant and "intermittent" (that is, a current showing slight commutator ripple) electrical currents, varying in strength from one to about ten milliamperes. Galvanotropic reactions were most readily forthcoming at about 2 m.a. constant current, higher current strengths producing signs of discomfort or rigor, and intermittent current being slightly more effective in producing such disturbances than constant current. As a rule, Polycelis places itself longitudinally, with head facing the kathode, and moves thither by means of looping, its normal gliding motion being in abeyance. If facing the kathode on application of the current, it simply loops forward, but if moving parallel to the electrodes it turns its anterior end first, and then movesmore or less directly towards the kathode. If previously facing the anode, a turn in the direction of the kathode is usually accomplished only after more or less headwaving and apparent difficulty or hesitation. Decapitate animals, if facing the anode in the current, at some time or other almost invariably loop backwards to the kathode, tail foremost, for a varying number of times, before turning their anterior end to the kathode and orientating normally. This was never observed in normal animals. Decaudate animals behave like unmutilated individuals. Decapitate-and-decaudate Polycelis (middle-pieces) reactin the same manner as do decapitate specimens, i.e. show backward looping. Longitudinal halves of Polycelis are usually curved towards the injured side, and show little or no movement, either in or out of the current; it is supposed that this curvature is mechanical and the result of the injury. Higher amperages (above 2 m.a.) produce, progressively, cessation of forward movement with twisting and apparent discomfort, and, finally, flattening of the kathodic end of the body. This last reaction is often accompanied by various postures, presumably the result of arrested movement. An explanation of these reactions, in normal and unmutilated animals, is attempted, based on the supposed interaction of the experimental current with the external portion of an inherent electrical circuit. If this inherent circuit be obstructed it is suggested that the metabolic activities, with which it is apparently correlated, are to some extent upset. Further, that to avoid this derangement, and concomitant malaise, the animals orientate themselves so that the experimental current does not flow counter to the external portion of their inherent circuit; that the turning mechanism of the flanks which affects this orientation can be explained upon similar grounds; finally that backward looping can be explained as a transference of control or dominance to the tail end, due to the combined inhibitory action of mutilation and of a contrary experimental current upon the normal physiological gradients at the anterior end. A variety of points related to the theory, and some cases of galvanotropism bearing on the work, together with their theoretical explanations, are discussed.


2019 ◽  
Vol 4 (2) ◽  

The present study was done in order to evaluate connection between body temperature and fear of rides. About 120 disciples of Baha Uddin Zakariya University took part in this study. Isothermal, also known as the normal temperature of body is one of the most important factors in maintaining the metabolic activities of the body that are vital for life. It normal value is 37 °C. It can be measured by using mercury thermometer [1]. It is measured on certain body positions like forehead, mouth and rectum. Fear of rides is common among people who have other phobias like claustrophobia, acrophobia etc. Those people whose body temperature is 97 are more afraid of rides as compared to those people who have low body temperature.


Sign in / Sign up

Export Citation Format

Share Document