The Oxygen Consumption of Flies During Flight

1940 ◽  
Vol 17 (4) ◽  
pp. 402-407 ◽  
Author(s):  
R. A. DAVIS ◽  
G. FRAENKEL

A method is described by which the oxygen uptake of the blow-fly, Lucilia sericata Mg., was measured during flight manometrically in a Warburg and in a Barcroft type of apparatus. The average oxygen consumption in air for all the flies used was 95·580 c.c. per g. wet weight per hour. When flying in pure oxygen the rate of oxygen consumption showed no significant difference; in oxygen-nitrogen mixtures, containing 10 and 5% oxygen, the rate was considerably less than in air.

1955 ◽  
Vol 32 (4) ◽  
pp. 692-699
Author(s):  
ELLEN THOMSEN ◽  
KIRSTEN HAMBURGER

1. The oxygen uptake of castrated females of Calliphora was measured and found to be of the same order as that of the ‘operated controls’, i.e. females operated upon in the same way except that their ovaries were not removed. This result confirms the conclusion drawn from previous experiments (Thomsen, 1949), viz. that the influence of the corpus allatum on the oxygen consumption works independently of the presence or absence of the ovaries. 2. However neither in castrated nor in normal females could any correlation be found between the size of the individual corpus allatum and the rate of oxygen consumption of the fly.


1958 ◽  
Vol 35 (2) ◽  
pp. 383-395
Author(s):  
R. W. EDWARDS

1. The oxygen consumption rates of 3rd- and 4th-instar larvae of Chironomus riparius have been measured at 10 and 20° C. using a constant-volume respirometer. 2. The oxygen consumption is approximately proportional to the 0.7 power of the dry weight: it is not proportional to the estimated surface area. 3. This relationship between oxygen consumption and dry weight is the same at 10 and at 20° C.. 4. The rate of oxygen consumption at 20° C. is greater than at 10° C. by a factor of 2.6. 5. During growth the percentage of dry matter of 4th-instar larvae increases from 10 to 16 and the specific gravity from 1.030 to 1.043. 6. The change in the dry weight/wet weight ratio during the 4 larval instar supports the theory of heterauxesis. 7. At 20° C., ‘summer’ larvae respire faster than ‘winter’ larvae.


1960 ◽  
Vol 37 (4) ◽  
pp. 706-718
Author(s):  
R. W. EDWARDS ◽  
M. A. LEARNER

1. The oxygen-consumption rates of Asellus aquaticus (males and females) have been measured at 10 and 20° C. using a constant-volume respirometer, and the effect of starvation for 24 hr. investigated. The oxygen consumption is approximately proportional to the 0.7 power of the wet weight. The rate of oxygen consumption at 20° C. is greater than at 10° C. by a factor of 1.5. 2. The oxygen-consumption rates of A. aquaticus and A. meridianus have been measured at 20° C. in a flowing-water respirometer employing a polarographic technique for the measurement of dissolved-oxygen concentrations. The oxygen consumptions of A. aquaticus and A. meridianus are similar and decrease by 15-20% when the dissolved-oxygen concentration falls from 8.3 to 1.5 p.p.m. 3. The oxygen consumption of A. aquaticus is between 35 and 75% higher in the polarographic respirometer than in the constant-volume respirometer.


Author(s):  
R. C. Newell ◽  
H. R. Northcroft

The rate of cirral beat of Balanus balanoides is related to the logarithm of the body weight as an exponential function. In any one animal, there is little effect of temperature on cirral activity between 7·5° and 10° C. Between 10° and 20° C, however, there is a rapid increase in cirral beat with temperature followed by a fall at temperatures above 20° C.Balanus balanoides exhibits a fast, medium and zero rate of oxygen consumption. These rates of oxygen consumption correspond with (a) normal cirral beating, (b) ‘testing’ activity with no cirral movement, and (c) with the closure of the mantle cavity. Both of the possible levels of oxygen uptake are related to the logarithm of the body weight in a logarithmic fashion over the temperature range 7·5°–22·5° C. Temperature affects the two rates of oxygen consumption differently. In the slower rate (rate B) there is an increase in the rate of oxygen consumption between 7·5° and 14° C but there is no significant increase in the rate of oxygen consumption between 14° and 22·5 C°.


Author(s):  
Sandra E. Shumway

Specimens of Pagurus bernhardus (with and without shells) were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and changes in haemolymph osmolality, tissue water content and oxygen consumption monitored. Oxygen consumption was also monitored under steady-state conditions; under these conditions there was no significant difference between the rate of oxygen consumption by animals with shells and animals without shells. Oxygen consumption was found to vary with body weight according to the equation O2 consumption = 0·292 W0·668. During exposure to fluctuating salinities the crabs with shells were seen to increase loco-motory activity when the external medium declined to approximately 75% sea water. Haemolymph osmolality values followed the same pattern of change as the external medium; the haemolymph of crabs without shells became significantly more dilute during exposure to low salinity than did that of crabs with shells. P. bernhardus showed significant increases and decreases in hydration level as salinities fell and rose respectively. Crabs with shells showed a marked temporary increase in oxygen consumption when the external medium declined to approximately 75% sea water; crabs without shells showed no such response. The importance of the shell as a means of protection against dilute media is discussed.


1964 ◽  
Vol 42 (3) ◽  
pp. 355-366 ◽  
Author(s):  
F. W. H. Beamish

Standard oxygen consumption was determined in relation to various partial pressures of oxygen for eastern brook trout at 10° and 15 °C, and for carp and goldfish at 10° and 20 °C. Two conditions of oxygen acclimation were compared. In one case acclimation was to air saturation while in the other acclimation was to each of the partial pressures of oxygen applied.Down to a partial pressure of oxygen of approximately 80 mm Hg, standard oxygen uptake remained approximately constant, and further, the rates for the two differently acclimated groups were about equal. Below 80 mm Hg the standard rate first increased to a maximum and then, with a further reduction in the partial pressure, decreased. Below 80 mm Hg the standard rate of oxygen consumption was in all cases less for the fish acclimated to the low level of oxygen than for those acclimated to air saturation.Comparison of standard and active values suggests that the increase in standard rate of oxygen uptake in response to low oxygen does not reach the active level as suggested earlier by Fry (1947). The suggestion is made that a fraction of standard metabolism is derived anaerobically in low levels of oxygen. Further, it appears that acclimation to a low level of oxygen enhances the anaerobic fraction of standard metabolism.


1971 ◽  
Vol 55 (2) ◽  
pp. 521-540 ◽  
Author(s):  
P. W. WEBB

1. The oxygen consumption of rainbow trout was measured at a variety of subfatigue swimming speeds, at a temperature of 15 %C. Five groups of fish were used, a control group and four groups with extra drag loads attached to the body. 2. The logarithm of oxygen consumption was linearly related to swimming speed in all five groups, the slope of the relationship increasing with the size of the extra drag load. The mean standard rate of oxygen consumption was 72.5 mg O2/kg wet weight/h. The active rate of oxygen consumption was highest for the control group (628 mg O2/kg/h) and fell with increasing size of the attached drag load. The active rate for the control group was high in comparison with other salmonid fish, and in comparison with the value expected for the fish. This was not a result of the extra drag loads in the other groups. No explanation for this high value can be found. 3. The critical swimming speed for a 60 min test period was 58.1 cm/sec (2.0 body lengths/sec) for the control group. The values for the critical swimming speeds were slightly higher than those measured for the same species in a previous paper (Webb, 1971). The difference between the two sets of critical swimming speeds is attributed to seasonal changes in swimming performance. 4. The aerobic efficiency was found to reach values of 14.5-15.5% based on the energy released by aerobic metabolism in comparison with the calculated required thrust. 5. The anaerobic contribution to the total energy budget in increasing-velocity tests is considered to be small, and can be neglected. 6. It is concluded that the efficiency of the muscle system in cruising will be approximately 17-20% over the upper 80% of the cruising-speed range, while the caudal propeller efficiency will increase from about 15-75 % over the same range. 7. Consideration of the efficiency values for the caudal propeller calculated here, and those predicted by Lighthill's (1969) model of fish propulsion, suggest that the efficiency of the propeller system will reach an optimum value at the maximum cruising speeds of most fish, and will remain close to this value at spring speeds.


1955 ◽  
Vol 38 (4) ◽  
pp. 431-439 ◽  
Author(s):  
M. E. Krahl ◽  
A. K. Keltch ◽  
C. P. Walters ◽  
G. H. A. Clowes

1. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases have been found in homogenates of Arbacia eggs; 95 per cent of the activity toward each substrate is recovered in the supernatant fraction after centrifuging at 20,000 g for 30 minutes. 2. With glucose-6-phosphate as substrate) the rate of TPN reduction by the supernatant fraction from 1 gm. wet weight unfertilized or fertilized eggs was 1.8 to 3.0 micromoles per minute; this rate is sufficient to support a rate of oxygen consumption 24 times that observed for unfertilized, and 6 times that for fertilized, eggs. Pentose was formed from glucose-6-phosphate at a rate 0.3 to 0.5 that of TPN reduction, when both rates were expressed as micromoles per minute. 3. The concentrations of glucose-6-phosphate and 6-phosphogluconate for half maximal activity were each approximately 0.00004 M for the respective enzymes in the supernatant fraction. Maximal activity toward 6-phosphogluconate was 50 to 60 per cent of that toward glucose-6-phosphate. Glucose-6-phosphate dehydrogenase activity was 50 per cent inhibited in presence of 0.00006 M 2,4,5-trichlorophenol. 4. Reduction of DPN by the supernatant fraction in presence of fructose-1,6-diphosphate and ADP was 0.1 to 0.2 micromoles per minute per gm. wet eggs, indicating that the glycolytic pathway can metabolize glucose-6-phosphate at about 5 per cent the rate at which it can be oxidized by the TPN system from unfertilized or fertilized Arbacia eggs. 5. Phosphoglucomutase, hexose isomerase, and a phosphatase for fructose-1,6-diphosphate also appear to be present in Arbacia eggs.


Parasitology ◽  
1958 ◽  
Vol 48 (1-2) ◽  
pp. 149-164 ◽  
Author(s):  
June P. Thurston

1. Standard conditions are described for preparing suspensions of washed Trypanosoma lewisi and T. equiperdum in modified Ringer–phosphate solution.2. Oxygen consumption was measured with differential manometers, using microflasks containing 2–5 × 107 trypanosomes in 0·9 ml. of reaction mixture. Measurements of oxygen uptake were carried out at 37° C.3. T. lewisi respired slowly in the absence of substrate for up to 2 hr. The trypanosomes suffered little damage when stored at 5° C. for 24 hr. without substrate. No oxygen uptake was observed with T. equiperdum in the absence of substrate. The trypanosomes were viable after 24 hr. at 5° C. with glucose or glycerol as substrate, but not in the absence of substrate.4. With glucose as substrate, the rate of oxygen consumption by T. lewisi increased with the age of infection. This change was more marked with glutamine as substrate.5. With glucosamine as substrate, the oxygen uptake of T. lewisi was at a slightly lower rate than with glucose. The rate of oxygen uptake was still lower with Na l-glutamic acid, asparagine, aspartic acid, casein hydrolysate, yeast extract and Difco Bacto-peptone. Thirteen other amino-acids had no effect on the motility of the trypanosomes.6. With glycerol as substrate, the oxygen uptake of T. equiperdum was at a slightly lower rate than with glucose. The rate of oxygen uptake was very low with yeast extract, casein hydrolysate and Difco Bacto-peptone. No oxygen uptake or motility was recorded with glutamine, Na l-glutamic acid, glucosamine, asparagine, aspartic acid, dl-alanine, or Na acetate. Thirteen other amino-acids had no effect on the motility of the trypanosomes.7. Ammonia was liberated from glutamine by adult and reproductive phase T. lewisi.


1929 ◽  
Vol 13 (1) ◽  
pp. 27-45 ◽  
Author(s):  
Charles S. Shoup

1. The respiration of luminous bacteria has been studied by colorimetric and manometric methods. 2. Limulus oxyhaemocyanin has been used as a colorimetric indicator of oxygen consumption and indicator dyes were used for colorimetric determination of carbon dioxide production. 3. The Thunberg-Winterstein microrespirometer has been used for the measurement of the rate of oxygen consumption by luminous bacteria at different partial pressures of oxygen. 4. The effect of oxygen concentration upon oxygen consumption has been followed from equilibrium with air to low pressures of oxygen. 5. Luminous bacteria consume oxygen and produce carbon dioxide independent of oxygen pressures from equilibrium with air (152 mm.) to approximately 22.80 mm. oxygen or 0.03 atmosphere. 6. Dimming of a suspension of luminous bacteria occurs when oxygen tension is lowered to approximately 2 mm. Hg (0.0026 atmosphere) and when the rate of respiration becomes diminished one-half. 7. Pure nitrogen stops respiratory activity and pure oxygen irreversibly inhibits oxygen consumption. 8. The curve for rate of oxygen consumption with oxygen concentration is similar to curves for adsorption of gasses at catalytic surfaces, and agrees with the Langmuir equation for the expression of the amount of gas adsorbed in unimolecular layer at catalytic surfaces with gas pressure. 9. A constant and maximum rate of oxygen consumption occurs in small cells when oxygen concentration becomes sufficient to entirely saturate the surface of the oxidative catalyst of the cell.


Sign in / Sign up

Export Citation Format

Share Document