On the respiratory flow in the cuttlefish sepia officinalis.

1994 ◽  
Vol 194 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Q Bone ◽  
E Brown ◽  
G Travers

The respiratory flow of water over the gills of the cuttlefish Sepia officinalis at rest is produced by the alternate activity of the radial muscles of the mantle and the musculature of the collar flaps; mantle circular muscle fibres are not involved. Inspiration takes place as the radial fibres contract, thinning the mantle and expanding the mantle cavity. The rise in mantle cavity pressure (up to 0.15 kPa), expelling water via the siphon during expiration, is brought about by inward movement of the collar flaps and (probably) mainly by elastic recoil of the mantle connective tissue network 'wound up' by radial fibre contraction during inspiration. Sepia also shows a second respiratory pattern, in which mantle cavity pressures during expiration are greater (up to 0.25 kPa). Here, the mantle circular fibres are involved, as they are during the large pressure transients (up to 10 kPa) seen during escape jetting. Active contraction of the muscles of the collar flaps is seen in all three patterns of expulsion of water from the mantle cavity, electrical activity increasing with increasing mantle cavity pressures. Respiratory expiration in the resting squid Loligo vulgaris is probably driven as in Sepia, whereas in the resting octopus Eledone cirrhosa, the mantle circular musculature is active during expiration. The significance of these observations is discussed.

2000 ◽  
Vol 203 (5) ◽  
pp. 869-878 ◽  
Author(s):  
N.A. Curtin ◽  
R.C. Woledge ◽  
Q. Bone

The passive elastic properties of the mantle of the cuttlefish Sepia officinalis have been characterized in experiments on intact mantle and on pieces cut from the mantle. The mantle was found to be very compliant over a wide range of circumferential strains, corresponding to a change in mantle circumferential strain of 0.45. Beyond this range of strain, the mantle was much stiffer, in both the circumferential direction, 0.542+/−0.025 MPa (mean +/− s.e.m., N=51) and through the thickness of the mantle wall, 0.152+/−0.041 MPa (N=11). Almost 80 % of the work done on the tissue during compression in the circumferential direction was recovered during elastic recoil of the tissue; this elastic work could contribute to refilling the mantle after a jet. Our estimates of the work done during a cycle of jetting and refilling show that such elastic work is small (approximately 1 %) compared with the contractile work done by the circular muscle fibres. However, although the elastic work is almost negligible in the overall energy budget, it is probably sufficient to power refilling of the mantle.


Author(s):  
Q. Bone ◽  
A. Pulsford ◽  
A. D. Chubb

The mantles of the small squid Alloteuthis, the larger Loligo, and the cuttlefish Sepia contain an elaborate framework of connective tissue fibres running in different planes. Some of these fibres are apparently elastic. The circular muscle fibres which provide the power stroke in mantle contraction are of two types. Inner and outer mantle zones consist of well-vascularized mitochondria-rich fibres, whereas the central zone contains only mitochondria-poor fibres with a sparse vascular bed. Nerve terminals on the two fibre types are similar. The radial fibres opposing the circular fibres are of the same type as the central fibres, at least in the mid-region of the mantle. It is suggested that the central fibres are involved in escape jetting contractions, and that the fibres of the inner and outer zones are used during rhythmical respiratory contractions.


1989 ◽  
Vol 143 (1) ◽  
pp. 17-31 ◽  
Author(s):  
W. M. Kier ◽  
K. K. Smith ◽  
J. A. Miyan

The musculature of the fins of the cuttlefish Sepia officinalis (Mollusca, Cephalopoda) was studied with electromyography to test predictions of the functional role of the various muscle masses. Previous research had shown the fins to consist of a tightly packed, three-dimensional array of muscle with distinct zones of anaerobic glycolytic and oxidative muscle fibres. In addition, a network of crossed oblique connective tissue fibres was observed within the musculature. In a previous paper a model of the function of the muscle and connective tissue was presented. In the present paper, we present recordings of electrical activity from the various muscle bundles in the fin, in conjunction with the output from an electronic movement-monitoring device, and correlate muscle activity with both the phase and the intensity of the fin-beat cycle. The results obtained here support the hypothesis that the oxidative muscle fibres produce gentle fin movements and are consistent with the hypothesis that the network of crossed oblique connective tissue fibres provides skeletal support. The results also support predictions that the anaerobic glycolytic muscle fibres both produce vigorous fin movements and provide support for that movement. This study provides a critical test of models of the role of the tightly packed, three-dimensional array of muscle found in muscular hydrostats such as the arms and tentacles of cephalopods and tongues of mammals and lizards.


1983 ◽  
Vol 104 (1) ◽  
pp. 97-109 ◽  
Author(s):  
JOHN M. GOSLINE ◽  
JOHN D. STEEVES ◽  
ANTHONY D. HARMAN ◽  
M. EDWIN DEMONT

1. By simultaneously recording the electromyographic (EMG) activity of squid mantle muscles, changes in mantle cavity pressure and changes in mantle diameter, we have been able to distinguish the pattern of radial muscle activity from circular muscle activity, and in so doing were able to determine the functional role of these muscle groups in motor behaviours. 2. Three distinguishable phases of activity appear during escape jets: (i), hyper-inflation brought about by the contraction of the radial muscles; (ii), the jet powered by the contraction of circular muscles; and (iii), refilling powered largely by the elastic recoil of the mantle wall, but with a small contribution from the radial muscles. 3. Two distinctly different patterns of muscular activity were seen in respiratory movements. One pattern (pattern I) is powered by the radial muscles alone, while the other (pattern II) is powered by the circular muscles alone. In both modes of respiration, the muscles are apparently antagonized by tissue elasticity. 4. Thus, the storage of elastic energy in the connective tissue fibre-lattice of the mantle wall plays a very important role in both modes of squid movement.


1975 ◽  
Vol 53 (3) ◽  
pp. 332-344 ◽  
Author(s):  
N. H. West ◽  
D. R. Jones

The normal pattern of breathing movements in Rana pipiens has been studied by recording pressure and volume changes in the buccal cavity and lungs, and electromyograms from the muscles involved in this activity. Two types of breathing movement were obtained, one concerned with ventilation of the buccal cavity (buccal cycles) and the other with lung ventilation (lung cycles). Only in the latter type of movement were the nares and glottis actively involved. During buccal cycles the nares remained open and the glottis closed, so although excursions of the buccal floor were some two-thirds of the magnitude of those occurring during lung cycles, only low pressures were generated. The onset of a lung cycle was signalled by activity in the laryngeal dilator muscle. When the glottis opened, lung pressure and volume decreased, and buccal cavity pressure and volume increased. After closure of the nares, the buccal floor was rapidly elevated by the activity of the breathing muscles and air was forced into the lungs from the buccal cavity. At peak pressure in the lungs and buccal cavity the glottis closed and nares opened. The recovery stroke of the buccal pump was passive. No evidence was found for large pressure differentials between the buccal cavity and lungs when the glottis was open, and air-flow recordings at the external nares showed two phases of flow during each buccal cycle and four phases with each lung ventilation cycle.


1974 ◽  
Vol 60 (3) ◽  
pp. 673-705 ◽  
Author(s):  
A. N. CLEMENTS ◽  
TERRY E. MAY

1. Two nerve-muscle preparations were used to investigate the physiology of the locust retractor unguis muscle in relation to L-glutamic acid. These were an ‘isolated preparation’, in which the muscle and its nerve were dissected out, and a ‘perfusedfemur preparation’, in which the muscle suffered no mechanical disturbance. 2. Exposure of the nerve--muscle preparations to glutamate caused a variety of responses, some of which were shown to be abnormal and due to the experimental conditions. 3. When locust femora were perfused with saline or haemolymph the retractor unguis muscles were much more severely affected by glutamate if the hydrostatic pressure was slightly raised. At raised pressures the perfused-femur preparations were particularly prone to give repetitive and spontaneous contractions. 4. Analysis of haemolymph from adult male locusts showed that it contained, on average, 0-2 mmol/1 L-glutamate, 45 mol/1 total non-peptide amino acids, 5-0 mmol/1 calcium, and 11-6 mmol/1 magnesium. It was calculated that approximately 50% of the calcium and 75% of the magnesium ions are bound to amino acids, and that approximately 25% of the glutamic acid is bound to divalent metal ions. 5. The isolated preparations were severely affected by glutamate at the concentration at which it occurs in haemolymph, and it was concluded that in the intact locust some mechanism must protect the neuromuscular synapses from haemolymphg lutamate. No evidence could be obtained of the sequestration of glutamate by haemocytes, or of binding of glutamate to haemolymph proteins. 6. Calcium and magnesium ions reduced the sensitivity of nerve-muscle preparations to glutamate to a greater extent than could be accounted for by the formation of amino acid-metal complexes. This suggests that the protection afforded by calcium and magnesium involves an interaction of the metal ions with the neuromuscular system itself. 7. The retractor unguis muscle was much less sensitive to glutamate when it was contained within an undissected femur than in an isolated preparation. It was concluded that the muscle is normally protected from haemolymph glutamate by a diffusion barrier which is damaged on dissection. 8. Comparison of the fine structure of retractor unguis muscles, fixed either after dissection or while still contained within the femur, showed that dissection normally caused a partial separation of muscle fibres and damage to the connective tissue sheath, with the resultant exposure of some nerve endings. The connective tissue sheath may constitute the postulated diffusion barrier. 9. The excitatory synapses of the locust retractor unguis muscle are believed to be isolated from haemolymph glutamate by a diffusion barrier, which is tentatively identified with the connective tissue sheath that binds the muscle fibres together. Calcium and magnesium ions reduce the sensitivity of nerve-muscle preparations to glutamate, and may have such a role in the living insect.


Parasitology ◽  
2003 ◽  
Vol 126 (3) ◽  
pp. 273-282 ◽  
Author(s):  
M. T. STEWART ◽  
A. MOUSLEY ◽  
B. KOUBKOVÁ ◽  
š. šEBELOVÁ ◽  
N. J. MARKS ◽  
...  

The major muscle systems of the metacercaria of the strigeid trematode, Apatemon cobitidis proterorhini have been examined using phalloidin as a site-specific probe for filamentous actin. Regional differences were evident in the organization of the body wall musculature of the forebody and hindbody, the former comprising outer circular, intermediate longitudinal and inner diagonal fibres, the latter having the inner diagonal fibres replaced with an extra layer of more widely spaced circular muscle. Three orientations of muscle fibres (equatorial, meridional, radial) were discernible in the oral sucker, acetabulum and paired lappets. Large longitudinal extensor and flexor muscles project into the hindbody where they connect to the body wall or end blindly. Innervation to the muscle systems of Apatemon was examined by immunocytochemistry, using antibodies to known myoactive substances: the flatworm FMRFamide-related neuropeptide (FaRP), GYIRFamide, and the biogenic amine, 5-hydroxytryptamine (5-HT). Strong immunostaining for both peptidergic and serotoninergic components was found in the central nervous system and confocal microscopic mapping of the distribution of these neuroactive substances revealed they occupied separate neuronal pathways. In the peripheral nervous system, GYIRFamide-immunoreactivity was extensive and, in particular, associated with the innervation of all attachment structures; serotoninergic fibres, on the other hand, were localized to the oral sucker and pharynx and to regions along the anterior margins of the forebody.


1994 ◽  
Vol 72 (3) ◽  
pp. 205-210 ◽  
Author(s):  
P. G. Forkert ◽  
L. Forkert

Trichloroethylene elicits acute pulmonary cytotoxicity in mice, which involves Clara cells of bronchioles. In this study, we have examined the effects of an acute dose of trichloroethylene in lungs of mice over 3 months. Pulmonary fibrosis was first detected at 15 days and was progressive with time elapsed after trichloroethylene exposure. Diffuse interstitial fibrosis was observed in the alveolar zone, resulting in thickening of alveolar septa and distortion of lung structure. The fibrosis was most pronounced at 90 days after treatment, resulting in deposition of connective tissue in the alveolar septa. Levels of total lung hydroxyproline were not significantly different in control and treated mice at 30 and 60 days after trichloroethylene treatment, but were significantly increased at 90 days. Proline content remained unchanged during the course of this study. The increase in collagen deposition at 90 days coincided with a signficant increase in lung elastic recoil. Our results show that a single acute dose of trichloroethylene causes structural and functional abnormalities that are progressive for at least 3 months.Key words: trichloroethylene, lung, interstitial fibrosis.


1907 ◽  
Vol 9 (3) ◽  
pp. 241-253 ◽  
Author(s):  
Charles W. Duval

1. Bacillus malleiand its poison produce a variety of vascular lesions in the rabbit and the guinea pig. 2. The type of the lesion depends upon, (a) the virulence of the culture, (b) the sex of the animal and (c) the degree of acquired immunity. 3. The vascular changes of a proliferative and degenerative nature produced by the slow action of the glanders poison in rabbits and guinea pigs are analogous to the vascular lesions caused by sub-acute glanders infection in man. 4. The most common site of the glanders vascular lesions of animals and man is the peripheral vessels, and especially the smaller visceral arteries. 5. The aorta is a less common site of the experimental lesions. 6. The vascular lesions produced experimentally by Bacillus mallei and its poison consist of three processes, (a) exudation, (b) proliferation, (c) degeneration. 7. The lesions produced by sub-acute glanders in man consist of two processes, proliferation and degeneration. 8. The primary reaction of the vessels in experimental animals and in sub-acute human glanders consists of a proliferation of the endothelium of the intima. 9. The first degenerative changes observed in experimental animals and in sub-acute human glanders occur in the "innermost layer" of the media and not in the so-called " middle zone." 10. The cause of the degenerative change in the inner layer of the media appears to be interference with the nourishment of the circular muscle fibres of the media by proliferation of the endothelium of the intima.


Sign in / Sign up

Export Citation Format

Share Document